期刊文献+
共找到379篇文章
< 1 2 19 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
2
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
Disparity estimation for multi-scale multi-sensor fusion
3
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
在线阅读 下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
4
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
5
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
6
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
7
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
8
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
9
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
10
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers 被引量:2
11
作者 Farzad Ebrahimi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期212-225,共14页
The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis... The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically. 展开更多
关键词 Vibration Agglomeration effect multi-scale hybrid nanocomposites Galerkin’s solution Viscous fluid flow
在线阅读 下载PDF
Multi-scale and multi-fractal analysis of pressure fluctuation in slurry bubble column bed reactor 被引量:1
12
作者 王兴军 胡立舜 +3 位作者 沈军杰 余志楠 王辅臣 于遵宏 《Journal of Central South University of Technology》 EI 2007年第5期696-700,共5页
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th... The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble. 展开更多
关键词 pressure fluctuation R/S analysis multi-scale MULTI-FRACTAL bubble column bed reactor
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
13
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS SPATIO-TEMPORAL teleconnection patterns multi-scale REGIONALIZATION
在线阅读 下载PDF
基于分布式双层强化学习的区域综合能源系统多时间尺度优化调度 被引量:1
14
作者 张薇 王浚宇 +1 位作者 杨茂 严干贵 《电工技术学报》 北大核心 2025年第11期3529-3544,共16页
考虑异质能源在网络中的流动时间差异性,提升系统设备在不同时间尺度下调控的灵活性,是实现区域综合能源系统(RIES)多时间尺度优化调度的关键。为此,该文提出一种面向冷-热-电RIES的分布式双层近端策略优化(DBLPPO)调度模型。首先将RIE... 考虑异质能源在网络中的流动时间差异性,提升系统设备在不同时间尺度下调控的灵活性,是实现区域综合能源系统(RIES)多时间尺度优化调度的关键。为此,该文提出一种面向冷-热-电RIES的分布式双层近端策略优化(DBLPPO)调度模型。首先将RIES内部能源的出力、储存和转换构建高维空间的马尔可夫决策过程数学模型;其次基于改进的分布式近端策略优化算法对其进行序贯决策描述,构建内部双层近端策略优化(PPO)的控制模型,局部网络采用“先耦合-再解耦”的求解思路对冷-热力系统和电力系统的设备进行多时间尺度优化决策,最终实现RIES冷-热力系统与电力系统的多时间尺度调度和协同优化运行;最后仿真结果表明,所提模型不仅能克服深度强化学习算法在复杂随机场景下的“维数灾难”问题,实现RIES各能源网络在不同时间尺度下的协同优化管理,还能加快模型的最优决策求解速度,提高系统运行的经济效益。 展开更多
关键词 区域综合能源系统 多时间尺度 分布式双层近端策略优化 深度强化学习 协同优化管理 经济效益
在线阅读 下载PDF
序列缩放攻击下多智能体系统的二分一致性
15
作者 王正新 陶怡梅 +1 位作者 蒋国平 冯元珍 《南京邮电大学学报(自然科学版)》 北大核心 2025年第5期94-101,共8页
研究基于观测器的序列缩放攻击下线性多智能体系统的二分一致性。首先,考虑到序列缩放攻击的攻击程度未知,设计了观测器来估计智能体的真实状态,以减少对误差系统稳定性的影响。其次,攻击信号被注入到整个网络的所有控制器到执行器的通... 研究基于观测器的序列缩放攻击下线性多智能体系统的二分一致性。首先,考虑到序列缩放攻击的攻击程度未知,设计了观测器来估计智能体的真实状态,以减少对误差系统稳定性的影响。其次,攻击信号被注入到整个网络的所有控制器到执行器的通道中,针对线性多智能体系统,提出基于观测器估计状态的分布式控制器,可以有效避免使用系统本身的信息。最后,利用Ly‑apunov函数证明受序列缩放攻击的线性多智能体系统在所设计的控制器下可以实现二分一致性,通过数值仿真验证理论结果的有效性。 展开更多
关键词 线性多智能体系统 序列缩放攻击 分布式控制 二分一致性
在线阅读 下载PDF
三塘湖盆地条湖—马朗凹陷侏罗系西山窑组巨厚煤层孔隙多尺度联合表征
16
作者 陈跃 雷琪琪 +4 位作者 马东民 王馨 王兴刚 黄蝶芳 荣高翔 《石油实验地质》 北大核心 2025年第1期104-116,共13页
三塘湖盆地侏罗系西山窑组中下部巨厚煤层分布广泛,然而目前对于巨厚煤层孔隙特征的研究较少。为精细表征盆地条湖—马朗凹陷煤储层孔隙特征,以西山窑组9-1和9-2煤为研究对象,通过高压压汞、低温液氮吸附、核磁共振、CT扫描、扫描电镜... 三塘湖盆地侏罗系西山窑组中下部巨厚煤层分布广泛,然而目前对于巨厚煤层孔隙特征的研究较少。为精细表征盆地条湖—马朗凹陷煤储层孔隙特征,以西山窑组9-1和9-2煤为研究对象,通过高压压汞、低温液氮吸附、核磁共振、CT扫描、扫描电镜等实验手段和孔隙—裂隙分析系统(PCAS)探究其孔隙发育特征。结果表明,两煤分层煤样表面形貌差异较大,9-1煤表面含有大量矿物晶体颗粒,气孔、角砾孔、摩擦孔以及微裂隙发育,孔裂隙拓扑结构明显,9-2煤具有明显的原生纤维结构,裂隙规模小而分散。两煤层孔隙结构分形特征差异明显,9-1煤比9-2煤非均质性更强,液氮吸附曲线属于Ⅱ型,存在H4型曲线滞后环。9-2煤微孔和小孔分维值分别为2.53和2.63,复杂程度更高,渗流孔连通性更强。煤样多重分形特征表明,小孔径孔隙分布较集中,分布范围较小,该孔径段非均质性更强,其中9-1煤孔径分布集中性更强,孔径分布间隔相对更均匀。采用联合表征煤样全尺度孔径分布特征,9-2煤总孔容大于9-1煤,大孔体积占比最大,分别为47.97%和44.48%,其次为中孔和小孔,微孔占比最少;微孔对两煤层孔比表面积贡献最大,分别为62.67%和58.43%;9-1煤各孔径的孔容贡献率与孔径大小呈正相关,而孔比表面积与孔径大小呈负相关。 展开更多
关键词 煤储层 孔裂隙分析系统 多尺度孔隙 多重分形 条湖—马朗凹陷 三塘湖盆地
在线阅读 下载PDF
考虑柔性负荷的新型电力系统源荷日前-日内低碳优化调度 被引量:3
17
作者 李若琼 司宇杰 +1 位作者 杨承辰 李欣 《南方电网技术》 北大核心 2025年第3期116-129,共14页
柔性负荷参与新型电力系统的优化调度对于提高新能源的消纳能力具有显著作用,但目前柔性负荷潜力尚未充分挖掘。针对这一问题,提出一种基于源荷预测的日前-日内优化调度方法。首先,采用麻雀搜索算法优化卷积长短时记忆神经网络(sparrow ... 柔性负荷参与新型电力系统的优化调度对于提高新能源的消纳能力具有显著作用,但目前柔性负荷潜力尚未充分挖掘。针对这一问题,提出一种基于源荷预测的日前-日内优化调度方法。首先,采用麻雀搜索算法优化卷积长短时记忆神经网络(sparrow search algorithm is used to optimize the convolutional long-term and short-term memory neural network,SSA-CNN-LSTM)对新能源和负荷进行日前和日内功率预测;其次,根据柔性负荷的特性和需求响应灵活性,将负荷分为可平移、可转移和可削减负荷等不同类型,以考虑阶梯式碳交易成本的系统运行成本和污染气体排放最优为目标构建源荷互动的日前-日内两阶段低碳环境经济调度模型;最后,利用改进多目标灰狼算法(multi-objective grey wolf algorithm,MOGWO)对模型进行求解。算例分析表明,通过对柔性负荷分类参与调度较传统方式总成本降低8.6%、污染物排放减少4.1%、新能源消纳能力提高4.2%,在多时间尺度内显著降低新能源和负荷响应的不确定性并提高新型电力系统的低碳环境经济综合效益。 展开更多
关键词 柔性负荷 新型电力系统 源-荷多时间尺度 低碳优化调度
在线阅读 下载PDF
基于MS1DCNN-BOA-SVM的智能液压系统故障诊断方法
18
作者 闫锋 肖成军 +2 位作者 孙一伟 孙有朝 谭忠睿 《机床与液压》 北大核心 2025年第8期174-181,共8页
针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构... 针对液压系统故障特征提取困难、诊断准确率低等问题,提出一种基于多尺度一维卷积神经网络(MS1DCNN)和贝叶斯搜索优化支持向量机(SVM)的智能故障诊断模型。将多个传感器信号合并为单一输入信号;通过多尺度卷积处理提取关键故障特征,构建特征向量;然后,利用贝叶斯搜索优化SVM进行分类识别,构建故障诊断模型;最后,对模型进行训练。结果表明:该模型对柱塞泵和蓄能器的故障诊断准确率分别为99.63%、99.17%;与MS1DCNN、1DCNN、SVM模型相比,该模型在液压系统故障诊断方面具有高准确率、高可靠性和强泛化能力的优势。 展开更多
关键词 液压系统 多尺度卷积神经网络 支持向量机 贝叶斯搜索优化 故障诊断
在线阅读 下载PDF
数据驱动的多时间尺度高炉煤气利用率模型预测控制 被引量:1
19
作者 安剑奇 赵国宇 +3 位作者 何勇 李炜俊 郭云鹏 吴敏 《控制理论与应用》 北大核心 2025年第1期189-201,共13页
煤气利用率(GUR)是衡量高炉能耗和稳顺运行的重要指标,受布料和送风操作在不同时间尺度下影响.现有对煤气利用率的建模、预测和控制仅在单一时间尺度上进行,忽略了多时间尺度特性,影响预测和控制的准确性.因此,提出一种数据驱动的多时... 煤气利用率(GUR)是衡量高炉能耗和稳顺运行的重要指标,受布料和送风操作在不同时间尺度下影响.现有对煤气利用率的建模、预测和控制仅在单一时间尺度上进行,忽略了多时间尺度特性,影响预测和控制的准确性.因此,提出一种数据驱动的多时间尺度高炉煤气利用率模型预测控制方法(MTSGURMPC).首先,根据经验模态分解和相关性分析得到布料和送风对煤气利用率影响的不同尺度;然后,建立布料长时间尺度和送风短时间尺度模型,提出了多时间尺度模型预测控制结构用于快速准确寻找高炉最优操作策略,该结构将煤气利用率划分为不同尺度进行模型预测控制,兼顾了高炉多时间尺度和模型预测控制动态优化特性,不断反馈优化趋近最优解;最后,基于某钢铁厂高炉工业数据进行应用实验,结果表明该方法能够实现煤气利用率准确预测和控制,并有效提高控制精度. 展开更多
关键词 高炉煤气利用率 数据驱动建模 多时间尺度系统 模型预测控制 经验模态分解
在线阅读 下载PDF
多尺度系统性风险与宏观经济的溢出效应研究 被引量:1
20
作者 张敏 王一丁 刘凤根 《统计研究》 北大核心 2025年第4期48-62,共15页
统筹高质量发展与高水平安全背景下,全面探究系统性风险与宏观经济的溢出效应具有重要意义。本文在测度系统性风险指数基础上,采用集成经验模态分解将系统性风险分解为高、中、低频三种频域成分,通过测度LSTVAR-DY溢出指数构建包含高、... 统筹高质量发展与高水平安全背景下,全面探究系统性风险与宏观经济的溢出效应具有重要意义。本文在测度系统性风险指数基础上,采用集成经验模态分解将系统性风险分解为高、中、低频三种频域成分,通过测度LSTVAR-DY溢出指数构建包含高、中、低频率系统性风险与宏观经济变量的两区制非线性溢出网络,从频域视角研究系统性风险与宏观经济间的非线性溢出效应明确溢出效应的来源和方向,并采用非线性格兰杰因果检验进一步确认各变量间的非线性因果关系。结果表明,我国系统性风险具有丰富的多尺度频域特征。系统性风险与宏观经济总体上存在显著的双向溢出效应,且总溢出效应在不同区制下存在非对称性;在经济上下行区制,系统性风险是主要的净溢出源头,在系统性风险高低区制,系统性风险与宏观经济均存在重要的净溢出来源;系统性风险低频分量是经济金融网络中的重要风险源头,中频分量在溢出网络中的角色存在区制转变,高频分量则在各区制中均为溢出的净输入节点。本文研究结论为完善稳增长与防风险的宏观调控政策提供新的经验证据。 展开更多
关键词 多尺度系统性风险 宏观经济 集成经验模态分解 溢出效应
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部