期刊文献+
共找到553篇文章
< 1 2 28 >
每页显示 20 50 100
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
1
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
2
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
3
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
4
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
5
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
6
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers 被引量:2
7
作者 Farzad Ebrahimi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期212-225,共14页
The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis... The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically. 展开更多
关键词 Vibration Agglomeration effect multi-scale hybrid nanocomposites Galerkin’s solution Viscous fluid flow
在线阅读 下载PDF
Multi-scale and multi-fractal analysis of pressure fluctuation in slurry bubble column bed reactor 被引量:1
8
作者 王兴军 胡立舜 +3 位作者 沈军杰 余志楠 王辅臣 于遵宏 《Journal of Central South University of Technology》 EI 2007年第5期696-700,共5页
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th... The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble. 展开更多
关键词 pressure fluctuation R/S analysis multi-scale MULTI-FRACTAL bubble column bed reactor
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
9
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS SPATIO-TEMPORAL teleconnection patterns multi-scale REGIONALIZATION
在线阅读 下载PDF
Disparity estimation for multi-scale multi-sensor fusion
10
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
11
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
12
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
13
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
在线阅读 下载PDF
华北“23.7”特大暴雨天气尺度系统活动特征及致雨机制
14
作者 李峰 吴蕾 +2 位作者 张林 邵长亮 蒋建莹 《大气科学学报》 北大核心 2025年第5期828-842,共15页
为揭示2023年7月29日—8月1日华北区域性极端暴雨过程的发生维持机制,基于地面高空观测及全球1°×1°再分析资料,利用多种诊断方法,分析了此次暴雨期间天气尺度系统的活动及其提供的水汽、动力及热力条件的结构和变化。研... 为揭示2023年7月29日—8月1日华北区域性极端暴雨过程的发生维持机制,基于地面高空观测及全球1°×1°再分析资料,利用多种诊断方法,分析了此次暴雨期间天气尺度系统的活动及其提供的水汽、动力及热力条件的结构和变化。研究表明,此次暴雨过程有多系统共同作用,热带季风系统、台风残余环流、副热带高压形成“链式”结构,尤其台风“杜苏芮”残留低压北上,打通了中国东部沿海到华北的海陆水汽通道,将热带印度洋、南海、西北太平洋地区的水汽“牵引”持续输送至华北,异于常年的丰富水汽汇入为极端降雨提供了必要条件。天气尺度系统在“23.7”暴雨中的作用至关重要,中高纬度高空环流演变,尤其是西风急流位置和强度调整,在华北上空制造了反气旋负涡度增长和高层辐散,高空抽吸强迫高层大气上升运动向中下层传导,与后续的东南低空急流激发的低层气旋性辐合上升运动通过垂直次级环流形成耦合,加强和维持了华北区域的大气对流活动。同时,降雨过程中释放的大量非绝热加热对暴雨系统垂直动力结构及华北地区上空环流形势起到正反馈贡献,进一步加强降雨环境,促进和维持了强暴雨的发生。此次特大暴雨过程是以动力驱动为主、热力驱动为辅,两者共同作用的结果。 展开更多
关键词 华北暴雨 天气尺度 非绝热加热 致雨机制
在线阅读 下载PDF
云南南部冰雹形成的天气背景与云微物理特征 被引量:1
15
作者 郑皎 郭欣 +2 位作者 付丹红 施元浩 郭学良 《气象学报》 北大核心 2025年第1期96-114,共19页
基于常规、双偏振天气雷达和激光降水粒子谱仪等观测数据,研究了云南南部红河州2022—2023年16次冰雹过程形成的天气背景、大气层结和云微物理特征。结果表明,云南南部冬、春季与夏季冰雹形成的天气背景不同,冬、春季冰雹的形成主要与... 基于常规、双偏振天气雷达和激光降水粒子谱仪等观测数据,研究了云南南部红河州2022—2023年16次冰雹过程形成的天气背景、大气层结和云微物理特征。结果表明,云南南部冬、春季与夏季冰雹形成的天气背景不同,冬、春季冰雹的形成主要与青藏高原盛行的南支西风槽波动和南亚副热带高压环流有关,而夏季冰雹主要与青藏高原高空反气旋性环流和南亚季风环流有关,这些环流背景有利于冰雹发生区域的大气不稳定层结增强和水汽增加。降雹主要发生在午后,可能与午后强烈的太阳辐射加热造成层结不稳定增强有关。另外,复杂地形影响下的地表非均匀加热也有利于局地对流系统的触发。各季的冰雹云均为暖底云,云底温度10—20℃,暖层厚度1.8-3 km,云顶海拔高度最大为15 km,最大回波强度为65 dBz。地面冰雹直径以10 mm以下为主,最大可达30 mm。在雷达回波强度大于50 dBz的冰雹形成区,不同季的雷达偏振参数存在明显特点,冬、春季差分反射率(Z_(DR))和比差分相移(K_(DP))比较相似,Z_(DR)一般在-2—0.2 dB,K_(DP)在-0.8—0.5°/km,但相关系数(CC)冬季为0.95—0.98,而春季减小为0.93,说明冰雹形成区由较小尺寸的锥状、球状冰雹、过冷雨滴等混合粒子组成。随着天气变暖,冰水粒子组成趋于复杂,导致CC减小。夏季Z_(DR)和K_(DP)显著增大,分别为-2—5 dB和-0.4—2.4°/km。但CC进一步减小为0.85,说明夏季冰雹形成区冰水粒子组成更为复杂,由尺寸比较大、水平取向更明显的锥状、盘状冰雹粒子和过冷雨滴组成。Z_(DR)和K_(DP)高值与大雨滴和冰雹融化过程有关。另外,最大垂直积分液态水含量(VIL_(max))与云顶高度和地面降雹尺寸也存在较好关系。本研究结果表明,青藏高原大气环流和过冷雨滴冻结过程在云南南部冰雹形成中具有重要作用。 展开更多
关键词 冰雹事件 天气背景 微物理特征 云南南部
在线阅读 下载PDF
云南省区域性短时强降水时空分布及其分类天气系统特征
16
作者 郭志荣 谭桂容 +2 位作者 段玮 杨素雨 姜清华 《大气科学学报》 北大核心 2025年第1期122-135,共14页
山地复杂地形地貌叠加特殊的地理位置使得短时强降水成为云南省发生频率较高的一种强对流天气,常引发自然灾害。基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)产品提供的2008—2022年0.0625°×0.0... 山地复杂地形地貌叠加特殊的地理位置使得短时强降水成为云南省发生频率较高的一种强对流天气,常引发自然灾害。基于中国气象局陆面数据同化系统(CMA Land Data Assimilation System,CLDAS)产品提供的2008—2022年0.0625°×0.0625°高空间分辨率的逐小时降水和ERA5逐小时再分析资料,本研究使用K均值聚类法对91次区域性短时强降水天气过程的环流进行聚类分型,并揭示其三维天气系统配置及热、动力特征。结果表明:1)短时强降水以滇东南发生频率最高,滇东南、滇西南和滇西的部分地区强度最强。日内以20—21时(世界时)强度大,14—15时频次多。年内以7月降水强度最大,6月降水量最多。同时,年际变化明显,其中极强值年份降水量可达80 mm以上,其多年平均降水量维持在26 mm左右。2)区域短时强降水天气过程可分为西风小槽型、高空长槽型和副高外围型,以高空长槽型发生频次最多、强降水范围最大。3)3类天气系统配置都存在有利于短时强降水发生的动力、水汽和热力条件:200 hPa存在强辐散区(如高空急流南侧),500 hPa位于槽前或副高西侧并伴有上升运动,中低层配合有低层切变线和低涡、地面辐合线等;同时,水汽多来自孟加拉湾,水汽随偏西气流至云南上空后辐合,K指数大于38℃。高空长槽型由于中低层切变线和低涡更靠近云南中部,低空锋面及冷空气活动更强,云南区域上空低(高)层辐合(散)最强,且由于其前倾的垂直结构引起的热力不稳定也最强,导致区域上空整层的上升运动和水汽辐合最显著、范围最大,故由其引起的短时强降水范围更大。 展开更多
关键词 云南省 短时强降水 客观分型 天气学模型
在线阅读 下载PDF
夏季午后重庆大气边界层垂直结构分析
17
作者 姜平 翟丹华 +2 位作者 朱浩楠 吴遥 张芬 《高原气象》 北大核心 2025年第5期1339-1351,共13页
利用雷达探空加密观测资料,对夏季午后重庆山地大气边界层的垂直结构进行分析,给出不同天气条件下大气边界层的一般特征。结果表明,晴天及多云条件下,夏季午后重庆大气边界层表现为典型的对流边界层结构:晴天,对流边界层发展旺盛,地表... 利用雷达探空加密观测资料,对夏季午后重庆山地大气边界层的垂直结构进行分析,给出不同天气条件下大气边界层的一般特征。结果表明,晴天及多云条件下,夏季午后重庆大气边界层表现为典型的对流边界层结构:晴天,对流边界层发展旺盛,地表加热明显,近地面超绝热层较厚、位温递减率较大,边界层高度平均可达1.5 km,最高达到2.1 km;多云条件下,对流边界层相对较弱,边界层高度平均只有1.0 km。阴天,大气边界层表现为典型的上午时段的边界层结构,即在对流边界层与夹卷层之间存在稳定边界层和残余混合层,对流边界层厚度较低,在0.8 km以下。降雨时,大气边界层位温表现出中性层结特征,即不存在明显的对流边界层结构。在无明显天气过程条件下,边界层的风速整体较低,小于5.0 m·s^(-1),甚至出现静风,比湿随高度的变化与位温大致相反;降水条件下,由于受不同天气系统和过程的影响,边界层的风场和湿度特征相对比较复杂和多变。 展开更多
关键词 夏季午后 大气边界层 垂直结构 天气条件
在线阅读 下载PDF
惠州前汛期暖区暴雨环流分型及其环境参量统计分析
18
作者 付智龙 姜帅 +5 位作者 李国平 陈芳丽 黄楚贤 骆蓉 张秋明 梁惠龙 《气象》 北大核心 2025年第4期473-483,共11页
利用自动气象站雨量资料、ERA5再分析数据对2003—2022年4—6月惠州前汛期暖区暴雨个例进行挑选和环流分型,对比分析了不同类型暖区暴雨发生时的平均环流场和环境场特征。得到以下主要结果:2003—2022年惠州前汛期共发生48次暖区暴雨,... 利用自动气象站雨量资料、ERA5再分析数据对2003—2022年4—6月惠州前汛期暖区暴雨个例进行挑选和环流分型,对比分析了不同类型暖区暴雨发生时的平均环流场和环境场特征。得到以下主要结果:2003—2022年惠州前汛期共发生48次暖区暴雨,可以分为切变型(第一类)、短波槽+低空急流型(第二类)和副热带高压外围+低空急流入口型(第三类)。进一步对比各类暖区暴雨的平均环流场发现,在500 hPa上除第二类暴雨受到短波槽影响外,其余两类暴雨惠州地区都处于西风气流、副热带高压外围西南气流的控制之下;在低层,第二、三类暴雨惠州附近都出现了双低空急流(西南低空急流和边界层低空急流),而第一类暴雨只在925 hPa珠江口以南出现了边界层低空急流。环境场特征分析表明,ERA5再分析资料计算的环境参量具有一定的可信度和适用性,第二、三类暴雨整体上水汽和能量条件优于第一类暴雨,但对于动力条件而言,第一类暴雨的垂直风切变则明显高于第二、三类暴雨,同时第一类暴雨的静力不稳定度也要高于其余两类暴雨。 展开更多
关键词 暖区暴雨 环流型 环境参量 双低空急流
在线阅读 下载PDF
南京市不同范围暴雨特征及其天气型分析
19
作者 赵钢 徐毅 +4 位作者 王浩先 任杰 柴佳明 卢泊安 朱坚 《水电能源科学》 北大核心 2025年第10期46-49,27,共5页
利用1961~2020年南京市5个国家级气象观测站日降水资料、NCEP逐日再分析资料,对南京市暴雨覆盖范围及影响不同范围暴雨的大气环流进行分析。结果发现南京市暴雨主要集中于夏季,在空间分布上以小范围暴雨为主,相邻站点同时发生暴雨的概... 利用1961~2020年南京市5个国家级气象观测站日降水资料、NCEP逐日再分析资料,对南京市暴雨覆盖范围及影响不同范围暴雨的大气环流进行分析。结果发现南京市暴雨主要集中于夏季,在空间分布上以小范围暴雨为主,相邻站点同时发生暴雨的概率明显大于非相邻站点,发生全市范围的暴雨次数相对较少。针对不同站点暴雨,通过聚类方法分析影响南京市暴雨的环流进行天气分型,结果表明引起南京市暴雨的天气型主要为季风型和气旋型,季风型占比较大,且随暴雨范围的增大占比增加;南京处在较弱的水汽辐合区时可能发生小范围暴雨,其中单站气旋型暴雨占比43%,而当较强的水汽辐合区覆盖南京大部分地区时,可能发生大范围暴雨,其中季风型暴雨占比80%以上,原因为季风影响下水汽从南方输送至南京周边有较强辐合,从而导致季风型暴雨占比较多、范围较大。 展开更多
关键词 南京暴雨 不同范围 聚类分析 天气分型 大气环流
在线阅读 下载PDF
太行山东麓下山对流风暴的环境特征
20
作者 程文静 王秀明 +1 位作者 俞小鼎 汤欢 《气象学报》 北大核心 2025年第4期1097-1117,共21页
基于2011—2020年暖季太行山东麓568个从山区到平原的强对流风暴(MTPSS)样本,利用ERA5资料和探空数据,研究了太行山东麓下山对流风暴的环境特征。结果表明,相较于华北暖季平均态(WSA),大的不稳定能量、显著深厚的湿层和大的850 hPa与500... 基于2011—2020年暖季太行山东麓568个从山区到平原的强对流风暴(MTPSS)样本,利用ERA5资料和探空数据,研究了太行山东麓下山对流风暴的环境特征。结果表明,相较于华北暖季平均态(WSA),大的不稳定能量、显著深厚的湿层和大的850 hPa与500 hPa的假相当位温差有利于出现MTPSS事件,加之WSA较大的下沉对流有效位能(DCAPE)和显著中层干层,表明MTPSS事件环境特征与华北雷暴大风环境特征相似。由Q矢量散度衡量的天气尺度系统强迫统计表明,天气尺度强迫越强,MTPSS成功下山概率越高。不同强迫类型下,主导MTPSS演变的环境因子不同:强强迫(SF)下风垂直切变等动力因子占主导,弱强迫(WF)下对流有效位能(CAPE)等热力因子占主导。如果不区分天气尺度系统强迫类型,成功下山事件和未成功下山事件的环境参量值差异不显著,而区分强迫类型后,SF下不同类型下山事件的环境要素差异显著,WF亦有一定的区分度。SF下,成功下山事件的环境特征为大的水平风垂直切变、显著中层干层和高DCAPE值,表明具有强下沉气流且组织程度较高的对流风暴下山影响平原地区概率高;WF下,成功下山事件850 hPa和500 hPa假相当位温差值较大,水汽含量高,表明驱动湿下击暴流形成的环境有利于对流风暴下山影响平原地区。 展开更多
关键词 太行山东麓 山区至平原强风暴 环境参量 天气尺度强迫类型 探空
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部