In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr...In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).展开更多
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ...Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.展开更多
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ...Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.展开更多
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and...In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.展开更多
A multi-residual module stacked hourglass network(MRSH)was proposed to improve the accuracy and robustness of human body pose estimation.The network uses multiple hourglass sub-networks and three new residual modules....A multi-residual module stacked hourglass network(MRSH)was proposed to improve the accuracy and robustness of human body pose estimation.The network uses multiple hourglass sub-networks and three new residual modules.In the hourglass sub-network,the large receptive field residual module(LRFRM)and the multi-scale residual module(MSRM)are first used to learn the spatial relationship between features and body parts at various scales.Only the improved residual module(IRM)is used when the resolution is minimized.The final network uses four stacked hourglass sub-networks,with intermediate supervision at the end of each hourglass,repeating high-low(from high resolution to low resolution)and low-high(from low resolution to high resolution)learning.The network was tested on the public datasets of Leeds sports poses(LSP)and MPII human pose.The experimental results show that the proposed network has better performance in human pose estimation.展开更多
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne...Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.展开更多
High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and...High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and enhance the function of automatic link establishment. Most of the existing spectrum prediction algorithms focus on predicting spectrum values in a slot-by-slot manner and therefore are lack of timeliness. Deep learning based spectrum prediction is developed in this paper by simultaneously predicting multi-slot ahead states of multiple spectrum points within a period of time. Specifically, we first employ supervised learning and construct samples depending on longterm and short-term HF spectrum data. Then, advanced residual units are introduced to build multiple residual network modules to respectively capture characteristics in these data with diverse time scales. Further, convolution neural network fuses the outputs of residual network modules above for temporal-spectral prediction, which is combined with residual network modules to construct the deep temporal-spectral residual network. Experiments have demonstrated that the approach proposed in this paper has a significant advantage over the benchmark schemes.展开更多
Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine lea...Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.展开更多
A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The...A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The backbone of CAN is channel attention block(CAB).The proposed CAB combines cosine similarity block(CSB)and back-projection gating block(BG).CSB fully considers global spatial information of each channel and computes the cosine similarity between each channel to obtain finer channel statistics than the first-order statistics.For further exploration of channel attention,we introduce effective back-projection to the gating mechanism and propose BG.Meanwhile,we adopt local and global residual connections in SISR which directly convey most low-frequency information to the final SR outputs and valuable high-frequency components are allocated more computational resources through channel attention mechanism.Extensive experiments show the superiority of the proposed CAN over the state-of-the-art methods on benchmark datasets in both accuracy and visual quality.展开更多
It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition met...It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods.展开更多
为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的...为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的数据集。接着,将Inception模块、残差思想、编码解码结构和生成对抗网络相结合,构建IRGAN(Generative Adversarial Network with Inception-Residual)模型来增强水下图像。然后,利用全局相似性、内容感知和色彩感知构造多项损失函数,约束生成网络和判别网络的对抗训练。最后,通过训练好的模型对退化水下图像进行处理以获得清晰的水下图像。实验结果表明与现有增强方法相比,所提算法增强的水下图像在PSNR、UIQM和IE指标上的平均值分别比第二名提升13.6%、4.1%和0.9%。在主观感知和客观评估中,增强后的水下图像在清晰度、对比度增强和颜色校正方面均得到改善。展开更多
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ...The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).展开更多
The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new...The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective.We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale.In particular,one novel position parameter based on node transmission efficiency is proposed,which mainly depends on the shortest distances from target nodes to high-degree nodes.In this regard,the novel multi-scale information importance(MSII)method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information.In simulation comparisons,five state-of-the-art algorithms,i.e.the neighbor nodes degree algorithm(NND),betweenness centrality,closeness centrality,Katz centrality and the k-shell decomposition method,are selected to compare with our MSII.The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.展开更多
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur...Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.展开更多
针对机场鸟类识别过程中存在识别难度较大、准确率较低等问题,该文提出了一种改进ResNet的SA-ResNet(SPDConv and Attention-ResNet)模型。模型采用空间到深度卷积(SPDConv)替换ResNet18中的跨步卷积层,避免信息的过度丢失,增强模型特...针对机场鸟类识别过程中存在识别难度较大、准确率较低等问题,该文提出了一种改进ResNet的SA-ResNet(SPDConv and Attention-ResNet)模型。模型采用空间到深度卷积(SPDConv)替换ResNet18中的跨步卷积层,避免信息的过度丢失,增强模型特征提取能力;使用高效通道注意力(ECA)改进卷积块注意力模块(CBAM),并提出高效卷积块注意力模块(ECBAM)进一步提高模型识别准确率。通过自建的ADB-20机场鸟类数据集验证表明,SA-ResNet模型的准确率达到了95.9%,能够很好地识别机场鸟类,为机场开展鸟击防范工作奠定基础。展开更多
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
文摘In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB).
基金National Natural Science Foundation of China under Grant No.61973037China Postdoctoral Science Foundation under Grant No.2022M720419。
文摘Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR.
基金supported by the International Research Center of Big Data for Sustainable Development Goals under Grant No.CBAS2022GSP05the Open Fund of State Key Laboratory of Remote Sensing Science under Grant No.6142A01210404the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant No.KLIGIP-2022-B03.
文摘Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.
基金The authors would like to acknowledge National Natural Science Foundation of China under Grant 61973037 and Grant 61673066 to provide fund for conducting experiments.
文摘In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs.
基金Supported by the National Natural Science Foundation of China(61401001,61501003,61672032)。
文摘A multi-residual module stacked hourglass network(MRSH)was proposed to improve the accuracy and robustness of human body pose estimation.The network uses multiple hourglass sub-networks and three new residual modules.In the hourglass sub-network,the large receptive field residual module(LRFRM)and the multi-scale residual module(MSRM)are first used to learn the spatial relationship between features and body parts at various scales.Only the improved residual module(IRM)is used when the resolution is minimized.The final network uses four stacked hourglass sub-networks,with intermediate supervision at the end of each hourglass,repeating high-low(from high resolution to low resolution)and low-high(from low resolution to high resolution)learning.The network was tested on the public datasets of Leeds sports poses(LSP)and MPII human pose.The experimental results show that the proposed network has better performance in human pose estimation.
基金supported by the National Natural Science Foundation of China(Nos.51973142,52033005,52003169).
文摘Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.
基金supported in part by the National Natural Science Foundation of China (Grants No. 61501510 and No. 61631020)Natural Science Foundation of Jiangsu Province (Grant No. BK20150717)+2 种基金China Postdoctoral Science Foundation Funded Project (Grant No. 2016M590398 and No.2018T110426)Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1501009A)Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province (Grant No. BK20160034)
文摘High frequency(HF) communication is widely spread due to some merits like easy deployment and wide communication coverage. Spectrum prediction is a promising technique to facilitate the working frequency selection and enhance the function of automatic link establishment. Most of the existing spectrum prediction algorithms focus on predicting spectrum values in a slot-by-slot manner and therefore are lack of timeliness. Deep learning based spectrum prediction is developed in this paper by simultaneously predicting multi-slot ahead states of multiple spectrum points within a period of time. Specifically, we first employ supervised learning and construct samples depending on longterm and short-term HF spectrum data. Then, advanced residual units are introduced to build multiple residual network modules to respectively capture characteristics in these data with diverse time scales. Further, convolution neural network fuses the outputs of residual network modules above for temporal-spectral prediction, which is combined with residual network modules to construct the deep temporal-spectral residual network. Experiments have demonstrated that the approach proposed in this paper has a significant advantage over the benchmark schemes.
基金the National Natural Science Foundation of China(No.U20B2038,No.61871398,NO.61901520 and No.61931011)the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030)the National Key R&D Program of China under Grant 2018YFB1801103.
文摘Specific emitter identification can distin-guish individual transmitters by analyzing received signals and extracting inherent features of hard-ware circuits.Feature extraction is a key part of traditional machine learning-based methods,but manual extrac-tion is generally limited by prior professional knowl-edge.At the same time,it has been noted that the per-formance of most specific emitter identification meth-ods degrades in the low signal-to-noise ratio(SNR)environments.The deep residual shrinkage network(DRSN)is proposed for specific emitter identification,particularly in the low SNRs.The soft threshold can preserve more key features for the improvement of performance,and an identity shortcut can speed up the training process.We collect signals via the receiver to create a dataset in the actual environments.The DRSN is trained to automatically extract features and imple-ment the classification of transmitters.Experimental results show that DRSN obtains the best accuracy un-der different SNRs and has less running time,which demonstrates the effectiveness of DRSN in identify-ing specific emitters.
文摘A novel channel attention residual network(CAN)for SISR has been proposed to rescale pixel-wise features by explicitly modeling interdependencies between channels and encoding where the visual attention is located.The backbone of CAN is channel attention block(CAB).The proposed CAB combines cosine similarity block(CSB)and back-projection gating block(BG).CSB fully considers global spatial information of each channel and computes the cosine similarity between each channel to obtain finer channel statistics than the first-order statistics.For further exploration of channel attention,we introduce effective back-projection to the gating mechanism and propose BG.Meanwhile,we adopt local and global residual connections in SISR which directly convey most low-frequency information to the final SR outputs and valuable high-frequency components are allocated more computational resources through channel attention mechanism.Extensive experiments show the superiority of the proposed CAN over the state-of-the-art methods on benchmark datasets in both accuracy and visual quality.
基金supported by the National Natural Science Foundation of China(No.71874081)Special Financial Grant from China Postdoctoral Science Foundation(No.2017T100366)Open Fund of Hebei Province Key laboratory of Research on data analysis method under dynamic electro-magnetic spectrum situation.
文摘It is particular important to identify the pattern of communication signal quickly and accurately at the airport terminal area with the increasing number of radio equipments.A signal modulation pattern recognition method based on compressive sensing and improved residual network is proposed in this work.Firstly,the compressive sensing method is introduced in the signal preprocessing process to discard the redundant components for sampled signals.And the compressed measurement signals are taken as the input of the network.Furthermore,based on a scaled exponential linear units activation function,the residual unit and the residual network are constructed in this work to solve the problem of long training time and indistinguishable sample similar characteristics.Finally,the global residual is introduced into the training network to guarantee the convergence of the network.Simulation results show that the proposed method has higher recognition efficiency and accuracy compared with the state-of-the-art deep learning methods.
文摘为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的数据集。接着,将Inception模块、残差思想、编码解码结构和生成对抗网络相结合,构建IRGAN(Generative Adversarial Network with Inception-Residual)模型来增强水下图像。然后,利用全局相似性、内容感知和色彩感知构造多项损失函数,约束生成网络和判别网络的对抗训练。最后,通过训练好的模型对退化水下图像进行处理以获得清晰的水下图像。实验结果表明与现有增强方法相比,所提算法增强的水下图像在PSNR、UIQM和IE指标上的平均值分别比第二名提升13.6%、4.1%和0.9%。在主观感知和客观评估中,增强后的水下图像在清晰度、对比度增强和颜色校正方面均得到改善。
基金supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20210347)。
文摘The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11801430,11801200,61877046,and 61877047).
文摘The identification of influential nodes in complex networks is one of the most exciting topics in network science.The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective.We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale.In particular,one novel position parameter based on node transmission efficiency is proposed,which mainly depends on the shortest distances from target nodes to high-degree nodes.In this regard,the novel multi-scale information importance(MSII)method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information.In simulation comparisons,five state-of-the-art algorithms,i.e.the neighbor nodes degree algorithm(NND),betweenness centrality,closeness centrality,Katz centrality and the k-shell decomposition method,are selected to compare with our MSII.The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.
文摘Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.
文摘针对机场鸟类识别过程中存在识别难度较大、准确率较低等问题,该文提出了一种改进ResNet的SA-ResNet(SPDConv and Attention-ResNet)模型。模型采用空间到深度卷积(SPDConv)替换ResNet18中的跨步卷积层,避免信息的过度丢失,增强模型特征提取能力;使用高效通道注意力(ECA)改进卷积块注意力模块(CBAM),并提出高效卷积块注意力模块(ECBAM)进一步提高模型识别准确率。通过自建的ADB-20机场鸟类数据集验证表明,SA-ResNet模型的准确率达到了95.9%,能够很好地识别机场鸟类,为机场开展鸟击防范工作奠定基础。