The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ...The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).展开更多
The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,eq...The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering.展开更多
基金supported by the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20210347)。
文摘The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise).
文摘The accurate and efficient prediction of explosive detonation properties has important engineering significance for weapon design.Traditional methods for predicting detonation performance include empirical formulas,equations of state,and quantum chemical calculation methods.In recent years,with the development of computer performance and deep learning methods,researchers have begun to apply deep learning methods to the prediction of explosive detonation performance.The deep learning method has the advantage of simple and rapid prediction of explosive detonation properties.However,some problems remain in the study of detonation properties based on deep learning.For example,there are few studies on the prediction of mixed explosives,on the prediction of the parameters of the equation of state of explosives,and on the application of explosive properties to predict the formulation of explosives.Based on an artificial neural network model and a one-dimensional convolutional neural network model,three improved deep learning models were established in this work with the aim of solving these problems.The training data for these models,called the detonation parameters prediction model,JWL equation of state(EOS)prediction model,and inverse prediction model,was obtained through the KHT thermochemical code.After training,the model was tested for overfitting using the validation-set test.Through the model-accuracy test,the prediction accuracy of the model for real explosive formulations was tested by comparing the predicted value with the reference value.The results show that the model errors were within 10%and 3%for the prediction of detonation pressure and detonation velocity,respectively.The accuracy refers to the prediction of tested explosive formulations which consist of TNT,RDX and HMX.For the prediction of the equation of state for explosives,the correlation coefficient between the prediction and the reference curves was above 0.99.For the prediction of the inverse prediction model,the prediction error of the explosive equation was within 9%.This indicates that the models have utility in engineering.