The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
Recently, the digital image blind forensics technology has received an increasing attention in academic community. This paper aims at developing a new identification approach based on the statistical noise and exchang...Recently, the digital image blind forensics technology has received an increasing attention in academic community. This paper aims at developing a new identification approach based on the statistical noise and exchangeable image file format (EXIF) information of image for images authen- tication. In particular, the authors can identify whether the current image has been modified or not by utilizing the relevance between noise and EXIF parameters and comparing the real values with the estimated values of the EXIF parameters. Experimental results validate the proposed method. That is, the detecting system can identify the doctored image effectively.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated ...A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.展开更多
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa...In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs.展开更多
A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected...A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mis...Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.展开更多
Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speed...Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.展开更多
Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevita...Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME.展开更多
In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hi...In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.展开更多
In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Fi...In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation.展开更多
In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy ...In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy c means(FCM) algorithm. Through the attributes of size and shape pattern spectrum,the optimal morphological structuring element was determined.According to the optimal parameters,some image noises were removed with an improved area opening and closing by reconstruction operation,which consist of image regional markers,and the bubbles were finely separated from each other by watershed transform.The experimental results show that the structural element can be determined adaptively by shape and size pattern spectrum,and the froth image is segmented accurately.Compared with other froth image segmentation method,the proposed method achieves much high accuracy,based on which,the bubble size and shape features are extracted effectively.展开更多
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs...Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.展开更多
Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are genera...Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.展开更多
In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches a...In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches about the complexity of image sequence.To solve this problem,a criterion of evaluating image sequence complexity is proposed.Firstly,to characterize this criterion quantitatively,two metrics for measuring the complexity of image sequence,namely feature space similarity degree of global background(FSSDGB)and feature space occultation degree of local background(FSODLB)are developed.Here,FSSDGB reflects the ability of global background to introduce false alarms based on feature space,and FSODLB represents the difference between target and local background based on feature space.Secondly,the feature space is optimized by the grey relational method and relevant features are removed so that FSSDGB and FSODLB are more reasonable to establish complexity of single-frame images.Finally,the image sequence complexity is not a linear sum of the single-frame image complexity.Target tracking errors often occur in high-complexity images and the tracking effect of low-complexity images is very well.The nonlinear transformation based on median(NTM)is proposed to construct complexity of image sequence.The experimental results show that the proposed metric is more valid than other metrics,such as sequence correlation(SC)and interframe change degree(IFCD),and it is highly relevant to the actual performance of automatic target tracking algorithms.展开更多
Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust...Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust features from various viewpoint images and rapidly calculate similarity between features in the image database or video stream.In order to solve these problems,an effective and rapid image classification method was presented for the object recognition based on the video learning technique.The optical-flow and RANSAC algorithm were used to acquire scene images from each video sequence.After the selection of scene images,the local maximum points on comer of object around local area were found using the Harris comer detection algorithm and the several attributes from local block around each feature point were calculated by using scale invariant feature transform (SIFT) for extracting local descriptor.Finally,the extracted local descriptor was learned to the three-dimensional pyramid match kernel.Experimental results show that our method can extract features in various multi-viewpoint images from query video and calculate a similarity between a query image and images in the database.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de...It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.展开更多
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
基金supported by the National Natural Science Foundation of China under Grant Nos.61370195and 11101048Beijing Natural Science Foundation under Grant No.4132060the National Cryptography Development Foundation of China under Grant No.MMJJ201201002
文摘Recently, the digital image blind forensics technology has received an increasing attention in academic community. This paper aims at developing a new identification approach based on the statistical noise and exchangeable image file format (EXIF) information of image for images authen- tication. In particular, the authors can identify whether the current image has been modified or not by utilizing the relevance between noise and EXIF parameters and comparing the real values with the estimated values of the EXIF parameters. Experimental results validate the proposed method. That is, the detecting system can identify the doctored image effectively.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金the National Natural Science Foundation (60572152) of China and Science Foundation ofShaanxi Province (2005F26)
文摘A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
文摘In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs.
基金supported partly by the National Basic Research Program of China (2005CB724303)the National Natural Science Foundation of China (60671062) Shanghai Leading Academic Discipline Project (B112).
文摘A novel feature fusion method is proposed for the edge detection of color images. Except for the typical features used in edge detection, the color contrast similarity and the orientation consistency are also selected as the features. The four features are combined together as a parameter to detect the edges of color images. Experimental results show that the method can inhibit noisy edges and facilitate the detection for weak edges. It has a better performance than conventional methods in noisy environments.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
基金This work was supported by the Equipment Pre-Research Foundation of China(6140001020310).
文摘Three-dimensional(3D)reconstruction based on aerial images has broad prospects,and feature matching is an important step of it.However,for high-resolution aerial images,there are usually problems such as long time,mismatching and sparse feature pairs using traditional algorithms.Therefore,an algorithm is proposed to realize fast,accurate and dense feature matching.The algorithm consists of four steps.Firstly,we achieve a balance between the feature matching time and the number of matching pairs by appropriately reducing the image resolution.Secondly,to realize further screening of the mismatches,a feature screening algorithm based on similarity judgment or local optimization is proposed.Thirdly,to make the algorithm more widely applicable,we combine the results of different algorithms to get dense results.Finally,all matching feature pairs in the low-resolution images are restored to the original images.Comparisons between the original algorithms and our algorithm show that the proposed algorithm can effectively reduce the matching time,screen out the mismatches,and improve the number of matches.
基金Supported by the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Augmented solar images were used to research the adaptability of four representative image extraction and matching algorithms in space weather domain.These include the scale-invariant feature transform algorithm,speeded-up robust features algorithm,binary robust invariant scalable keypoints algorithm,and oriented fast and rotated brief algorithm.The performance of these algorithms was estimated in terms of matching accuracy,feature point richness,and running time.The experiment result showed that no algorithm achieved high accuracy while keeping low running time,and all algorithms are not suitable for image feature extraction and matching of augmented solar images.To solve this problem,an improved method was proposed by using two-frame matching to utilize the accuracy advantage of the scale-invariant feature transform algorithm and the speed advantage of the oriented fast and rotated brief algorithm.Furthermore,our method and the four representative algorithms were applied to augmented solar images.Our application experiments proved that our method achieved a similar high recognition rate to the scale-invariant feature transform algorithm which is significantly higher than other algorithms.Our method also obtained a similar low running time to the oriented fast and rotated brief algorithm,which is significantly lower than other algorithms.
文摘Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME.
基金Supported by the National Natural Science Foundation of China(61601176)。
文摘In this paper,we propose hierarchical attention dual network(DNet)for fine-grained image classification.The DNet can randomly select pairs of inputs from the dataset and compare the differences between them through hierarchical attention feature learning,which are used simultaneously to remove noise and retain salient features.In the loss function,it considers the losses of difference in paired images according to the intra-variance and inter-variance.In addition,we also collect the disaster scene dataset from remote sensing images and apply the proposed method to disaster scene classification,which contains complex scenes and multiple types of disasters.Compared to other methods,experimental results show that the DNet with hierarchical attention is robust to different datasets and performs better.
基金supported by the National Natural Science Foundation of China(61472324 61671383)+1 种基金Shaanxi Key Industry Innovation Chain Project(2018ZDCXL-G-12-2 2019ZDLGY14-02-02)
文摘In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation.
基金Projects(60634020,60874069) supported by the National Natural Science Foundation of ChinaProject(2009AA04Z137) supported by the National High-Tech Research and Development Program of China
文摘In order to extract froth morphological feature,a bubble image adaptive segmentation method was proposed.Considering the image's low contrast and weak froth edges,froth image was coarsely segmented by using fuzzy c means(FCM) algorithm. Through the attributes of size and shape pattern spectrum,the optimal morphological structuring element was determined.According to the optimal parameters,some image noises were removed with an improved area opening and closing by reconstruction operation,which consist of image regional markers,and the bubbles were finely separated from each other by watershed transform.The experimental results show that the structural element can be determined adaptively by shape and size pattern spectrum,and the froth image is segmented accurately.Compared with other froth image segmentation method,the proposed method achieves much high accuracy,based on which,the bubble size and shape features are extracted effectively.
基金supported by the National Key Research and Development Program of China under grant 2016YFC0802904National Natural Science Foundation of China under grant61671470the Postdoctoral Science Foundation Funded Project of China under grant 2017M623423。
文摘Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.
基金supported by the National Natural Science Foundation of China(61271315)the State Scholarship Fund of China
文摘Image matching based on scale invariant feature transform(SIFT) is one of the most popular image matching algorithms, which exhibits high robustness and accuracy. Grayscale images rather than color images are generally used to get SIFT descriptors in order to reduce the complexity. The regions which have a similar grayscale level but different hues tend to produce wrong matching results in this case. Therefore, the loss of color information may result in decreasing of matching ratio. An image matching algorithm based on SIFT is proposed, which adds a color offset and an exposure offset when converting color images to grayscale images in order to enhance the matching ratio. Experimental results show that the proposed algorithm can effectively differentiate the regions with different colors but the similar grayscale level, and increase the matching ratio of image matching based on SIFT. Furthermore, it does not introduce much complexity than the traditional SIFT.
基金supported by the National Natural Science Foundation of China(61703337)Shanghai Aerospace Science and Technology Innovation Fund(SAST2017-082)
文摘In the field of automatic target recognition and tracking,traditional image complexity metrics,such as statistical variance and signal-to-noise ratio,all focus on single-frame images.However,there are few researches about the complexity of image sequence.To solve this problem,a criterion of evaluating image sequence complexity is proposed.Firstly,to characterize this criterion quantitatively,two metrics for measuring the complexity of image sequence,namely feature space similarity degree of global background(FSSDGB)and feature space occultation degree of local background(FSODLB)are developed.Here,FSSDGB reflects the ability of global background to introduce false alarms based on feature space,and FSODLB represents the difference between target and local background based on feature space.Secondly,the feature space is optimized by the grey relational method and relevant features are removed so that FSSDGB and FSODLB are more reasonable to establish complexity of single-frame images.Finally,the image sequence complexity is not a linear sum of the single-frame image complexity.Target tracking errors often occur in high-complexity images and the tracking effect of low-complexity images is very well.The nonlinear transformation based on median(NTM)is proposed to construct complexity of image sequence.The experimental results show that the proposed metric is more valid than other metrics,such as sequence correlation(SC)and interframe change degree(IFCD),and it is highly relevant to the actual performance of automatic target tracking algorithms.
文摘Automatic image classification is the first step toward semantic understanding of an object in the computer vision area.The key challenge of problem for accurate object recognition is the ability to extract the robust features from various viewpoint images and rapidly calculate similarity between features in the image database or video stream.In order to solve these problems,an effective and rapid image classification method was presented for the object recognition based on the video learning technique.The optical-flow and RANSAC algorithm were used to acquire scene images from each video sequence.After the selection of scene images,the local maximum points on comer of object around local area were found using the Harris comer detection algorithm and the several attributes from local block around each feature point were calculated by using scale invariant feature transform (SIFT) for extracting local descriptor.Finally,the extracted local descriptor was learned to the three-dimensional pyramid match kernel.Experimental results show that our method can extract features in various multi-viewpoint images from query video and calculate a similarity between a query image and images in the database.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
基金Projects(41001260,61173122,61573380) supported by the National Natural Science Foundation of ChinaProject(11JJ5044) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.