期刊文献+
共找到730篇文章
< 1 2 37 >
每页显示 20 50 100
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:5
1
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Image Tamper Detection and Multi-Scale Self-Recovery Using Reference Embedding with Multi-Rate Data Protection 被引量:1
2
作者 Navid Daneshmandpour Habibollah Danyali Mohammad Sadegh Helfroush 《China Communications》 SCIE CSCD 2019年第11期154-166,共13页
This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a mult... This paper proposes a multi-scale self-recovery(MSSR)approach to protect images against content forgery.The main idea is to provide more resistance against image tampering while enabling the recovery process in a multi-scale quality manner.In the proposed approach,the reference data composed of several parts and each part is protected by a channel coding rate according to its importance.The first part,which is used to reconstruct a rough approximation of the original image,is highly protected in order to resist against higher tampering rates.Other parts are protected with lower rates according to their importance leading to lower tolerable tampering rate(TTR),but the higher quality of the recovered images.The proposed MSSR approach is an efficient solution for the main disadvantage of the current methods,which either recover a tampered image in low tampering rates or fails when tampering rate is above the TTR value.The simulation results on 10000 test images represent the efficiency of the multi-scale self-recovery feature of the proposed approach in comparison with the existing methods. 展开更多
关键词 TAMPER detection image recovery multi-scale SELF-RECOVERY tolerable tampering rate
在线阅读 下载PDF
Face Detection Detection, Alignment Alignment, Quality Assessment and Attribute Analysis with Multi-Task Hybrid Convolutional Neural Networks 被引量:5
3
作者 GUO Da ZHENG Qingfang +1 位作者 PENG Xiaojiang LIU Ming 《ZTE Communications》 2019年第3期15-22,49,共9页
This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists ... This paper proposes a universal framework,termed as Multi-Task Hybrid Convolutional Neural Network(MHCNN),for joint face detection,facial landmark detection,facial quality,and facial attribute analysis.MHCNN consists of a high-accuracy single stage detector(SSD)and an efficient tiny convolutional neural network(T-CNN)for joint face detection refinement,alignment and attribute analysis.Though the SSD face detectors achieve promising results,we find that applying a tiny CNN on detections further boosts the detected face scores and bounding boxes.By multi-task training,our T-CNN aims to provide five facial landmarks,facial quality scores,and facial attributes like wearing sunglasses and wearing masks.Since there is no public facial quality data and facial attribute data as we need,we contribute two datasets,namely FaceQ and FaceA,which are collected from the Internet.Experiments show that our MHCNN achieves face detection performance comparable to the state of the art in face detection data set and benchmark(FDDB),and gets reasonable results on AFLW,FaceQ and FaceA. 展开更多
关键词 face detection face ALIGNMENT FACIAL ATTRIBUTE CNN MULTI-TASK training
在线阅读 下载PDF
Face Detection under Complex Background and Illumination 被引量:2
4
作者 Shao-Dong Lv Yong-Duan Song +1 位作者 Mei Xu Cong-Ying Huang 《Journal of Electronic Science and Technology》 CAS CSCD 2015年第1期78-82,共5页
For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the character... For face detection under complex background and illumination, a detection method that combines the skin color segmentation and cost-sensitive Adaboost algorithm is proposed in this paper. First, by using the characteristic of human skin color clustering in the color space, the skin color area in YC b C r color space is extracted and a large number of irrelevant backgrounds are excluded; then for remedying the deficiencies of Adaboost algorithm, the cost-sensitive function is introduced into the Adaboost algorithm; finally the skin color segmentation and cost-sensitive Adaboost algorithm are combined for the face detection. Experimental results show that the proposed detection method has a higher detection rate and detection speed, which can more adapt to the actual field environment. 展开更多
关键词 ADABOOST cost-sensitive learning face detection skin color segmentation
在线阅读 下载PDF
In-pit coal mine personnel uniqueness detection technology based on personnel positioning and face recognition 被引量:11
5
作者 Sun Jiping Li Chenxin 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期357-361,共5页
Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance manag... Since the coal mine in-pit personnel positioning system neither can effectively achieve the function to detect the uniqueness of in-pit coal-mine personnel nor can identify and eliminate violations in attendance management such as multiple cards for one person, and swiping one's cards by others in China at present. Therefore, the research introduces a uniqueness detection system and method for in-pit coal-mine personnel integrated into the in-pit coal mine personnel positioning system, establishing a system mode based on face recognition + recognition of personnel positioning card + release by automatic detection. Aiming at the facts that the in-pit personnel are wearing helmets and faces are prone to be stained during the face recognition, the study proposes the ideas that pre-process face images using the 2D-wavelet-transformation-based Mallat algorithm and extracts three face features: miner light, eyes and mouths, using the generalized symmetry transformation-based algorithm. This research carried out test with 40 clean face images with no helmets and 40 lightly-stained face images, and then compared with results with the one using the face feature extraction method based on grey-scale transformation and edge detection. The results show that the method described in the paper can detect accurately face features in the above-mentioned two cases, and the accuracy to detect face features is 97.5% in the case of wearing helmets and lightly-stained faces. 展开更多
关键词 Coal mine Uniqueness detection Recognition of personnel positioning cards face recognition Generalized symmetry transformation
在线阅读 下载PDF
SKEWED SYMMETRY DETECTION OF QUADRIC SURFACE SOLIDS UNDER ORTHOGRAPHIC PROJECTION
6
作者 王翔 丁运亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第3期212-218,共7页
The skewed symmetry detection plays an improtant role in three-dimensional(3-D) reconstruction. The skewed symmetry depicts a real symmetry viewed from some unknown viewing directions. And the skewed symmetry detect... The skewed symmetry detection plays an improtant role in three-dimensional(3-D) reconstruction. The skewed symmetry depicts a real symmetry viewed from some unknown viewing directions. And the skewed symmetry detection can decrease the geometric constrains and the complexity of 3-D reconstruction. The detection technique for the quadric curve ellipse proposed by Sugimoto is improved to further cover quadric curves including hyperbola and parabola. With the parametric detection, the 3-D quadric curve projection matching is automatical- ly accomplished. Finally, the skewed symmetry surface of the quadric surface solid is obtained. Several examples are used to verify the feasibility of the algorithm and satisfying results can be obtained. 展开更多
关键词 three-dimensional computer graphics face reconstruction skewed symmetry detection quadric surface solid
在线阅读 下载PDF
Improved YOLOv8-Based Target Detection Algorithm for UAV Aerial Image
7
作者 JIANG Mao-xiang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期86-96,共11页
In response to the challenge of low detection accuracy and susceptibility to missed and false detections of small targets in unmanned aerial vehicles(UAVs)aerial images,an improved UAV image target detection algorithm... In response to the challenge of low detection accuracy and susceptibility to missed and false detections of small targets in unmanned aerial vehicles(UAVs)aerial images,an improved UAV image target detection algorithm based on YOLOv8 was proposed in this study.To begin with,the CoordAtt attention mechanism was employed to enhance the feature extraction capability of the backbone network,thereby reducing interference from backgrounds.Additionally,the BiFPN feature fusion network with an added small object detection layer was used to enhance the model's ability to perceive for small objects.Furthermore,a multi-level fusion module was designed and proposed to effectively integrate shallow and deep information.The use of an enhanced MPDIoU loss function further improved detection performance.The experimental results based on the publicly available VisDrone2019 dataset showed that the improved model outperformed the YOLOv8 baseline model,mAP@0.5 improved by 20%,and the improved method improved the detection accuracy of the model for small targets. 展开更多
关键词 UAV YOLOv8 Attentional mechanisms multi-scale detection MPDIoU
在线阅读 下载PDF
Improved YOLOv5-Based Inland River Floating Garbage Detection Model
8
作者 HU Wen-hao SI Zhan-jun +1 位作者 SHI Jin-yu YANG Ke 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期195-204,共10页
Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditi... Detection of floating garbage in inland rivers is crucial for water environmental protection,as it effectively reduces ecological damage and ensures the safety of water resources.To address the inefficiency of traditional cleanup methods and the challenges in detecting small targets,an improved YOLOv5 object detection model was proposed in this study.In order to enhance the model’s sensitivity to small targets and mitigate the impact of redundant information on detection performance,a bi-level routing attention mechanism was introduced and embedded into the backbone network.Additionally,a multi-scale detection head was incorporated into the model,allowing for more comprehensive coverage of floating garbage of various sizes through multi-scale feature extraction and detection.The Focal-EIoU loss function was also employed to optimize the model parameters,improving localization accuracy.Experimental results on the publicly available FloW_Img dataset demonstrated that the improved YOLOv5 model outperforms the original YOLOv5 model in terms of precision and recall,achieving a mAP(mean average precision)of 86.12%,with significant improvements and faster convergence. 展开更多
关键词 Floatinggarbage YOLOv5 Attentionmechanism multi-scale detection head Focal-EIoU
在线阅读 下载PDF
Hybrid System for Robust Faces Detection
9
作者 Hayet Farida Merouani Amir Benzaoui 《Journal of Electronic Science and Technology》 CAS 2012年第2期167-172,共6页
The automatic detection of faces is a very important problem. The effectiveness of biometric authentication based on face mainly depends on the method used to locate the face in the image. This paper presents a hybrid... The automatic detection of faces is a very important problem. The effectiveness of biometric authentication based on face mainly depends on the method used to locate the face in the image. This paper presents a hybrid system for faces detection in unconstrained cases in which the illumination, pose, occlusion, and size of the face are uncontrolled. To do this, the new method of detection proposed in this paper is based primarily on a technique of automatic learning by using the decision of three neural networks, a technique of energy compaction by using the discrete cosine transform, and a technique of segmentation by the color of human skin. A whole of pictures (faces and no faces) are transformed to vectors of data which will be used for learning the neural networks to separate between the two classes. Discrete cosine transform is used to reduce the dimension of the vectors, to eliminate the redundancies of information, and to store only the useful information in a minimum number of coefficients while the segmentation is used to reduce the space of research in the image. The experimental results have shown that this hybridization of methods will give a very significant improvement of the rate of the recognition, quality of detection, and the time of execution. 展开更多
关键词 Energy compaction face detection face recognition neural networks.
在线阅读 下载PDF
基于SSD与FaceNet的人脸识别系统设计 被引量:1
10
作者 李政林 吴志运 +1 位作者 熊禹 尹希庆 《广西科技大学学报》 CAS 2024年第1期94-99,共6页
人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占... 人脸识别技术广泛应用于考勤管理、移动支付等智慧建设中。伴随着常态化的口罩干扰,传统人脸识别算法已无法满足实际应用需求,为此,本文利用深度学习模型SSD以及FaceNet模型对人脸识别系统展开设计。首先,为消除现有数据集中亚洲人脸占比小造成的类内间距变化差距不明显的问题,在CAS-IA Web Face公开数据集的基础上对亚洲人脸数据进行扩充;其次,为解决不同口罩样式对特征提取的干扰,使用SSD人脸检测模型与DLIB人脸关键点检测模型提取人脸关键点,并利用人脸关键点与口罩的空间位置关系,额外随机生成不同的口罩人脸,组成混合数据集;最后,在混合数据集上进行模型训练并将训练好的模型移植到人脸识别系统中,进行检测速度与识别精度验证。实验结果表明,系统的实时识别速度达20 fps以上,人脸识别模型准确率在构建的混合数据集中达到97.1%,在随机抽取的部分LFW数据集验证的准确率达99.7%,故而该系统可满足实际应用需求,在一定程度上提高人脸识别的鲁棒性与准确性。 展开更多
关键词 类内间距 人脸检测 人脸识别
在线阅读 下载PDF
Experiment in metal disturbance during advanced detection using a transient electromagnetic method in coal mines 被引量:13
11
作者 JIANG Zhihai YUE Jianhua YU Jingcun 《Mining Science and Technology》 EI CAS 2010年第6期861-863,共3页
Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we use... Tunneling machines, or excavators, are large and good conductors and affect the reliability of data gathering and interpretation in advanced detection using transient electromagnetic methods. In our experiment, we used a coincident-loop and central loop type of configuration, where the coil plane l) vertical to and 2) parallel to the working face. A SIROTEM instrument at different locations was used to observe the transient electromagnetic responses of the excavator and to analyze the response amplitudes. The result shows that the tunneling machine affects the advanced detection data and is related to the way the coil is coupled. When the excavator is 6 m from the observatory, the interference of tunneling machine can be ignored. 展开更多
关键词 transient electromagnetic method advanced detection metal disturbance driving face
在线阅读 下载PDF
Bidirectional parallel multi-branch convolution feature pyramid network for target detection in aerial images of swarm UAVs 被引量:4
12
作者 Lei Fu Wen-bin Gu +3 位作者 Wei Li Liang Chen Yong-bao Ai Hua-lei Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1531-1541,共11页
In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swa... In this paper,based on a bidirectional parallel multi-branch feature pyramid network(BPMFPN),a novel one-stage object detector called BPMFPN Det is proposed for real-time detection of ground multi-scale targets by swarm unmanned aerial vehicles(UAVs).First,the bidirectional parallel multi-branch convolution modules are used to construct the feature pyramid to enhance the feature expression abilities of different scale feature layers.Next,the feature pyramid is integrated into the single-stage object detection framework to ensure real-time performance.In order to validate the effectiveness of the proposed algorithm,experiments are conducted on four datasets.For the PASCAL VOC dataset,the proposed algorithm achieves the mean average precision(mAP)of 85.4 on the VOC 2007 test set.With regard to the detection in optical remote sensing(DIOR)dataset,the proposed algorithm achieves 73.9 mAP.For vehicle detection in aerial imagery(VEDAI)dataset,the detection accuracy of small land vehicle(slv)targets reaches 97.4 mAP.For unmanned aerial vehicle detection and tracking(UAVDT)dataset,the proposed BPMFPN Det achieves the mAP of 48.75.Compared with the previous state-of-the-art methods,the results obtained by the proposed algorithm are more competitive.The experimental results demonstrate that the proposed algorithm can effectively solve the problem of real-time detection of ground multi-scale targets in aerial images of swarm UAVs. 展开更多
关键词 Aerial images Object detection Feature pyramid networks multi-scale feature fusion Swarm UAVs
在线阅读 下载PDF
基于RetinaFace与FaceNet的动态人脸识别系统设计 被引量:1
13
作者 李云鹏 席志红 《电子科技》 2024年第12期79-86,共8页
针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用... 针对在现有人脸静态识别过程中被识别人需等待配合的问题,文中提出了一种动态人脸识别系统。该系统采用了基于RetinaFace与FaceNet算法的动态人脸检测和识别方法,并进行了优化,以达到高识别精度和实时性的目标。其中,RetinaFace检测采用GhostNet作为骨干网络,使用Adaptive-NMS(Non Max Suppression)非极大值抑制用于人脸框的回归,FaceNet识别采用MobileNetV1作为骨干网络,使用Triplet损失与交叉熵损失结合的联合损失函数用以人脸分类。优化后的算法在检测与识别上具有良好表现,改进RetinaFace算法在WiderFace数据集下检测精度为93.35%、90.84%和80.43%,FPS(Frames Per Second)可达53 frame·s^(-1)。动态人脸检测平均检测精度为96%,FPS为21 frame·s^(-1)。当FaceNet阈值设为1.15时,识别率最高达到98.23%。动态识别系统平均识别精度98%,FPS可达20 frame·s^(-1)。实验结果表明,该系统解决了人脸静态识别中需等待配合的问题,具有较高的识别精度与实时性。 展开更多
关键词 人脸检测 人脸识别 深度学习 Retinaface faceNet 网络轻量化 MobileNet GhostNet
在线阅读 下载PDF
Infrared Thermography and Big Data for Detection of People with Fever and Determination of High-Risk Areas in Epidemic Situations
14
作者 ROBALINO ESPINOZA Viviana Lorena TAMAYO FREIRE Alexis Shipson 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第S01期122-128,共7页
Technological advances in computer science and their application in our daily life allow us to improve our understanding of problems and solve them effectively.A system design to detect people with fever and determine... Technological advances in computer science and their application in our daily life allow us to improve our understanding of problems and solve them effectively.A system design to detect people with fever and determine highrisk areas using infrared thermography and big data is presented.In order to detect people with fever,face detection algorithms of Viola-Jones and Kanade-Lucas are investigated,and comparison between them is presented using a training set of 406 thermal images and a test set of 2072 thermal images.Thermography analysis is performed on detected faces to obtain the temperature level on Celsius scale.With this information a sample database is created.To perform big data experimental analysis,Power Bi tool is used to determine the high-risk area.The experimental results show that Viola-Jones algorithm has a higher performance recognizing faces of thermal images than KanadeLucas,having a high detection rate,less false-positives rate and false-negatives rate. 展开更多
关键词 face detection THERMOGRAPHY image analysis big data
在线阅读 下载PDF
Multi-Scale Feature Extraction for Joint Classification of Hyperspectral and LiDAR Data
15
作者 Yongqiang Xi Zhen Ye 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期13-22,共10页
With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)da... With the development of sensors,the application of multi-source remote sensing data has been widely concerned.Since hyperspectral image(HSI)contains rich spectral information while light detection and ranging(LiDAR)data contains elevation information,joint use of them for ground object classification can yield positive results,especially by building deep networks.Fortu-nately,multi-scale deep networks allow to expand the receptive fields of convolution without causing the computational and training problems associated with simply adding more network layers.In this work,a multi-scale feature fusion network is proposed for the joint classification of HSI and LiDAR data.First,we design a multi-scale spatial feature extraction module with cross-channel connections,by which spatial information of HSI data and elevation information of LiDAR data are extracted and fused.In addition,a multi-scale spectral feature extraction module is employed to extract the multi-scale spectral features of HSI data.Finally,joint multi-scale features are obtained by weighting and concatenation operations and then fed into the classifier.To verify the effective-ness of the proposed network,experiments are carried out on the MUUFL Gulfport and Trento datasets.The experimental results demonstrate that the classification performance of the proposed method is superior to that of other state-of-the-art methods. 展开更多
关键词 hyperspectral image(HSI) light detection and ranging(LiDAR) multi-scale feature classification
在线阅读 下载PDF
基于割煤循环智能检测的工作面来压判识方法
16
作者 罗香玉 康林星 +2 位作者 南添松 解盘石 伍永平 《工矿自动化》 北大核心 2025年第3期16-21,共6页
基于液压支架工作阻力数据进行工作面来压判识需解决2个问题:一是如何从海量的工作阻力数据中提取循环末阻力数据,二是如何有效利用提取出的循环末阻力数据对工作面是否来压实现有效判断。现有的循环末阻力提取方法大多依赖固定规则和... 基于液压支架工作阻力数据进行工作面来压判识需解决2个问题:一是如何从海量的工作阻力数据中提取循环末阻力数据,二是如何有效利用提取出的循环末阻力数据对工作面是否来压实现有效判断。现有的循环末阻力提取方法大多依赖固定规则和经验值参数,在复杂工作面环境下准确性低且适应性差。针对该问题,提出一种基于割煤循环智能检测的工作面来压判识方法。将割煤循环检测转化为二分类问题,使用支持向量机分类器对割煤循环结束时刻进行智能检测,以自动判别割煤循环的结束时刻;在获取所有割煤循环结束时刻的基础上,提取各支架循环末阻力数据;通过数据融合生成能够反映工作面整体压力状态的单序列数据,并基于来压判定公式进行工作面来压判识。基于不连沟煤矿某工作面的液压支架工作阻力数据进行实验,结果表明,该方法割煤循环检测的精确率、召回率、F_(1)分数分别为85.91%,81.84%,83.83%,来压判识的精确率、召回率、F_(1)分数分别为79.43%,78.76%,79.09%,均优于滑动窗口极值法和阈值法,在识别循环末阻力和工作面来压判识方面具有显著优势。 展开更多
关键词 顶板灾害防控 来压判识 割煤循环智能检测 支持向量机 循环末阻力
在线阅读 下载PDF
基于UeDiff-GAN的综采工作面目标检测与孪生体同步映射
17
作者 张帆 于洋 +7 位作者 戚振明 李海军 王春丽 杜潇 王柄印 张光磊 宋惠 席宸荣 《工矿自动化》 北大核心 2025年第3期9-15,21,共8页
矿井综采工作面数字孪生模型的构建过程需要手动构建实体的数字孪生3D模型,然后对实体进行目标检测,并根据实时检测结果控制3D模型,以确保孪生体与实体之间的同步映射关系。因此,对井下目标的实时、准确检测是实现虚实同步映射控制的关... 矿井综采工作面数字孪生模型的构建过程需要手动构建实体的数字孪生3D模型,然后对实体进行目标检测,并根据实时检测结果控制3D模型,以确保孪生体与实体之间的同步映射关系。因此,对井下目标的实时、准确检测是实现虚实同步映射控制的关键。目前主流的目标检测方法需要在传统模型中引入或改进模块,使得模型网络结构复杂、训练周期较长,降低了目标检测的实时性;同时,对于一些含高强度噪声的图像难以精确检测。针对上述问题,提出了一种基于UeDiff-GAN的综采工作面目标检测与孪生体同步映射方法。通过扩散模型对高质量样本进行加噪扩散,得到不同程度的加噪样本,然后使用生成对抗网络(GAN)模型进行训练;设计了平滑扩散算法,以控制扩散步长,加入不均衡扩散模块,以得到与预识别样本匹配的检测算法模型。使用Unity3D构建综采工作面3D模型并进行渲染,实现井下物理实体的对象孪生,据此构建综采工作面实体与其孪生模型的映射关系,根据井下不同位置的检测结果控制对应机器运动状态及姿态,实现孪生模型协同控制,从而实现过程孪生。在自制数据集上的实验结果表明:UeDiff-GAN模型对井下移动目标的平均检测精度较SSD,R-CNN,YOLOv7和Diff-GAN模型分别提升了19.4%,14.3%,9.1%,24.3%;检测速度较SSD,R-CNN分别提升了13.86,42.73帧/s;孪生模型与实体的实时性延迟至多为0.873 s。 展开更多
关键词 综采工作面 数字孪生 目标检测 虚实同步映射 扩散模型 生成对抗网络
在线阅读 下载PDF
基于ConvNeXt的伪造人脸检测方法
18
作者 何德芬 江倩 +3 位作者 金鑫 冯明 苗圣法 易华松 《信息安全研究》 北大核心 2025年第3期231-240,共10页
由深度生成模型生成的虚假图像越发逼真,这些图像已经超越了人眼的识别能力.这种模型已成为编造谎言、制造舆论等非法活动的新工具.虽然当前研究者已经提出了很多检测方法检测伪造图像,但泛化能力普遍不高,因此,提出了一种基于ConvNeXt... 由深度生成模型生成的虚假图像越发逼真,这些图像已经超越了人眼的识别能力.这种模型已成为编造谎言、制造舆论等非法活动的新工具.虽然当前研究者已经提出了很多检测方法检测伪造图像,但泛化能力普遍不高,因此,提出了一种基于ConvNeXt的伪造人脸检测方法.首先在ConvNeXt的第2个和第3个下采样模块后添加极化自注意(polarization self-attention,PSA)模块,使网络具有空间注意力和通道注意力的性能.其次在ConvNeXt的尾部设计一个信息富余模块(rich imformation block,RIB),以丰富网络学习到的信息,通过该模块对信息进行处理后再进行最终的分类.此外,网络训练使用的损失函数是交叉熵损失与KL(Kullback-Leibler)散度的结合.在当前主流的伪造人脸数据集上作了大量的实验,实验结果表明该方法在FF++高质量数据集上无论是准确率还是泛化性都超过所有对比方法. 展开更多
关键词 神经网络 深度学习 伪造人脸 特征提取 伪造图像检测
在线阅读 下载PDF
面向煤矿综掘工作面复杂环境的视觉感知系统
19
作者 苏国用 胡坤 +2 位作者 王鹏彧 赵东洋 张辉 《浙江大学学报(工学版)》 北大核心 2025年第5期995-1006,1030,共13页
针对煤矿恶劣环境下视觉检测算法鲁棒性不足的难题,提出面向煤矿综掘工作面复杂环境的视觉感知系统.该系统采用ELAN-DS特征提取模块、SimAM注意力模块与解耦检测头对YOLOv7-tiny算法进行优化,构建煤矿综掘工作面视觉检测网络(CMCE-Net).... 针对煤矿恶劣环境下视觉检测算法鲁棒性不足的难题,提出面向煤矿综掘工作面复杂环境的视觉感知系统.该系统采用ELAN-DS特征提取模块、SimAM注意力模块与解耦检测头对YOLOv7-tiny算法进行优化,构建煤矿综掘工作面视觉检测网络(CMCE-Net).将CMCE-Net迁移部署到视觉感知终端平台内,测试CMCE-Net在煤矿实际作业工况下的检测性能,基于煤矿综掘工作面数据集开展验证实验.实验结果表明,CMCE-Net的检测精度达到89.5%,相较于YOLOv7-tiny算法提升了5.2%.与Faster RCNN、YOLOv7-tiny、YOLOv8s等8种算法相比,综合检测性能最佳,模型复杂度处于较低水平.在视觉感知终端平台内,CMCE-Net对测试视频的检测速度最高达到33.4帧/s,在人机多目标混杂工况下,CMCE-Net对装备与人员的检测精度均大于90.0%. 展开更多
关键词 综掘工作面 关键目标 视觉感知 检测网络
在线阅读 下载PDF
基于ArcFace算法的人脸识别应用研究 被引量:11
20
作者 薛继伟 孙宇锐 辛纪元 《电子设计工程》 2022年第11期168-172,共5页
针对传统课堂考勤方式的局限性,为了减少教师点名的工作量,对基于深度学习的人脸识别技术进行了研究。通过实验对比结果,使用MTCNN算法对图片进行人脸对齐处理,采用LFFD算法进行人脸检测,通过ArcFace算法完成教室课堂场景下多人图像的... 针对传统课堂考勤方式的局限性,为了减少教师点名的工作量,对基于深度学习的人脸识别技术进行了研究。通过实验对比结果,使用MTCNN算法对图片进行人脸对齐处理,采用LFFD算法进行人脸检测,通过ArcFace算法完成教室课堂场景下多人图像的人脸识别。该模型在LFW人脸识别测试数据集上的准确率可以达到93.2%。将最终模型应用到无感点名系统开发中,供教师课堂点名使用,可以避免浪费课堂时间。 展开更多
关键词 人脸识别 无感点名 Arcface 人脸检测 深度学习
在线阅读 下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部