期刊文献+
共找到19,830篇文章
< 1 2 250 >
每页显示 20 50 100
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
1
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
2
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
3
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
An algorithm for segmentation of lung ROI by mean-shift clustering combined with multi-scale HESSIAN matrix dot filtering 被引量:7
4
作者 魏颖 李锐 +1 位作者 杨金柱 赵大哲 《Journal of Central South University》 SCIE EI CAS 2012年第12期3500-3509,共10页
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ... A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%. 展开更多
关键词 HESSIAN matrix multi-scale dot filtering mean-shift clustering segmentation of suspected areas lung computer-aideddetection/diagnosis
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
5
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
6
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
Vibration analysis of fluid-conveying multi-scale hybrid nanocomposite shells with respect to agglomeration of nanofillers 被引量:2
7
作者 Farzad Ebrahimi Ali Dabbagh 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期212-225,共14页
The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis... The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically. 展开更多
关键词 Vibration Agglomeration effect multi-scale hybrid nanocomposites Galerkin’s solution Viscous fluid flow
在线阅读 下载PDF
Multi-scale and multi-fractal analysis of pressure fluctuation in slurry bubble column bed reactor 被引量:1
8
作者 王兴军 胡立舜 +3 位作者 沈军杰 余志楠 王辅臣 于遵宏 《Journal of Central South University of Technology》 EI 2007年第5期696-700,共5页
The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and th... The Daubechies second order wavelet was applied to decompose pressure fluctuation signals with the gas flux varying from 0.18 to 0.90 m3/h and the solid mass fraction from 0 to 20% and scales 1?9 detail signals and the 9th scale approximation signals. The pressure signals were studied by multi-scale and R/S analysis method. Hurst analysis method was applied to analyze multi-fractal characteristics of different scale signals. The results show that the characteristics of mono-fractal under scale 1 and scale 2, and bi-fractal under scale 3?9 are effective in deducing the hydrodynamics in slurry bubbling flow system. The measured pressure signals are decomposed to micro-scale signals, meso-scale signals and macro-scale signals. Micro-scale and macro-scale signals are of mono-fractal characteristics, and meso-scale signals are of bi-fractal characteristics. By analyzing energy distribution of different scale signals,it is shown that pressure fluctuations mainly reflects meso-scale interaction between the particles and the bubble. 展开更多
关键词 pressure fluctuation R/S analysis multi-scale MULTI-FRACTAL bubble column bed reactor
在线阅读 下载PDF
Multi-scale regionalization based mining of spatio-temporal teleconnection patterns between anomalous sea and land climate events
9
作者 XU Feng SHI Yan +3 位作者 DENG Min GONG Jian-ya LIU Qi-liang JIN Rui 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2438-2448,共11页
Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-de... Climate sequences can be applied to defining sensitive climate zones, and then the mining of spatio-temporal teleconnection patterns is useful for learning from the past and preparing for the future. However, scale-dependency in this kind of pattern is still not well handled by existing work. Therefore, in this study, the multi-scale regionalization is embedded into the spatio-temporal teleconnection pattern mining between anomalous sea and land climatic events. A modified scale-space clustering algorithm is first developed to group climate sequences into multi-scale climate zones. Then, scale variance analysis method is employed to identify climate zones at characteristic scales, indicating the main characteristics of geographical phenomena. Finally, by using the climate zones identified at characteristic scales, a time association rule mining algorithm based on sliding time windows is employed to discover spatio-temporal teleconnection patterns. Experiments on sea surface temperature, sea level pressure, land precipitation and land temperature datasets show that many patterns obtained by the multi-scale approach are coincident with prior knowledge, indicating that this method is effective and reasonable. In addition, some unknown teleconnection patterns discovered from the multi-scale approach can be further used to guide the prediction of land climate. 展开更多
关键词 CLIMATE sequences ANOMALOUS climatic EVENTS SPATIO-TEMPORAL teleconnection patterns multi-scale REGIONALIZATION
在线阅读 下载PDF
Disparity estimation for multi-scale multi-sensor fusion
10
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
11
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
12
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
Combing the Entropy Weight Method with Fuzzy Mathematics for Assessing the Quality and Post-Ripening Mechanism of High-Temperature Daqu during Storage 被引量:1
13
作者 YANG Junlin YANG Shaojuan +8 位作者 WU Cheng YIN Yanshun YOU Xiaolong ZHAO Wenyu ZHU Anran WANG Jia HU Feng HU Jianfeng WANG Diqiang 《食品科学》 北大核心 2025年第9期48-62,共15页
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar... This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu. 展开更多
关键词 microbial community high-temperature Daqu comprehensive quality evaluation entropy weight method maturation process
在线阅读 下载PDF
A high entropy stabilized perovskite oxide La_(0.2)Pr_(0.2)Sm_(0.2)Gd_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)as a promising air electrode for reversible solid oxide cells 被引量:1
14
作者 LI Ruoyu LI Xiaoyu +2 位作者 ZHANG Jinke GAO Yuan LING Yihan 《燃料化学学报(中英文)》 北大核心 2025年第2期282-290,共9页
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p... Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC. 展开更多
关键词 reversible solid oxide cell high entropy stabilized perovskite air electrode electrochemical performance
在线阅读 下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
15
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
在线阅读 下载PDF
Research on wear state prediction of ball end milling cutter based on entropy measurement of tool mark texture images
16
作者 LI Mao-yue LU Xin-yuan +1 位作者 LIU Ze-long ZHANG Ming-lei 《Journal of Central South University》 2025年第1期174-188,共15页
Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the t... Efficient tool condition monitoring techniques help to realize intelligent management of tool life and reduce tool usage costs.In this paper,the influence of different wear degrees of ball-end milling cutters on the texture shape of machining tool marks is investigated,and a method is proposed for predicting the wear state(including the position and degree of tool wear)of ball-end milling cutters based on entropy measurement of tool mark texture images.Firstly,data samples are prepared through wear experiments,and the change law of the tool mark texture shape with the tool wear state is analyzed.Then,a two-dimensional sample entropy algorithm is developed to quantify the texture morphology.Finally,the processing parameters and tool attitude are integrated into the prediction process to predict the wear value and wear position of the ball end milling cutter.After testing,the correlation between the predicted value and the standard value of the proposed tool condition monitoring method reaches 95.32%,and the accuracy reaches 82.73%,indicating that the proposed method meets the requirement of tool condition monitoring. 展开更多
关键词 ball-end cutter wear tool condition monitoring surface texture texture quantifier sample entropy
在线阅读 下载PDF
Design and optimization of the RGB beam combiner in micro display using entropy weight-TOPSIS method
17
作者 ZHENG Yu ZHAO Yan-bing +4 位作者 ZOU Xin-jie WANG Ji-rong JIANG Xiang LIU Jian-zhe DUAN Ji-an 《Journal of Central South University》 2025年第2期483-494,共12页
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens... Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm. 展开更多
关键词 optical waveguide combiners red-green-blue beam combiner beam propagation method entropy weight TOPSIS method multiplexing efficiency
在线阅读 下载PDF
基于改进FAHP-Entropy赋权法的耕地破碎化时空分析--以成都市新津区为例
18
作者 黄梦佳 赵诗童 +1 位作者 李颖 张汝正 《江西农业学报》 2025年第9期99-108,共10页
为了解耕地破碎化时空变化格局并划分整治区域,从规模、形状、分布维度出发,采用改进FAHP-Entropy赋权法分析了耕地破碎化时空分异情况,并结合热点分析确定整治分区。结果表明:(1)耕地动态变化上,研究时段区域内耕地斑块数量呈下降趋势... 为了解耕地破碎化时空变化格局并划分整治区域,从规模、形状、分布维度出发,采用改进FAHP-Entropy赋权法分析了耕地破碎化时空分异情况,并结合热点分析确定整治分区。结果表明:(1)耕地动态变化上,研究时段区域内耕地斑块数量呈下降趋势,耕地规模先减后增,减少耕地呈现向西南方向聚集的态势。(2)县域尺度耕地破碎化时空变化上,研究时段区域内耕地景观破碎化指数整体呈下降趋势,规模、形状、分布3类破碎化指数均呈减少趋势,规模破碎化指数对耕地景观破碎化指数的影响占主导地位。(3)乡镇(街道)尺度耕地破碎化时空变化上,各乡镇(街道)耕地景观破碎化时空变化存在差异,但整体形成“东北部上升、其余地区下降”的分布格局。从分维属性看,规模、形状、分布破碎化高值和低值区乡镇(街道)数量减少,而中值区乡镇(街道)数量增加,整体呈现更加均衡的趋势。(4)2023年变更的耕地景观破碎化热点分析结果呈现出由东向西递减的变化趋势,且具有较强的空间关联性和明显的地域特征,并划分出Ⅰ区(热点区域)、Ⅱ区(不显著区域)、Ⅲ区(冷点区域)3个整治区域。 展开更多
关键词 耕地破碎化 改进FAHP-entropy赋权法 时空分析 整治分区
在线阅读 下载PDF
分类精确性指数Entropy在潜剖面分析中的表现:一项蒙特卡罗模拟研究 被引量:135
19
作者 王孟成 邓俏文 +2 位作者 毕向阳 叶浩生 杨文登 《心理学报》 CSSCI CSCD 北大核心 2017年第11期1473-1482,共10页
本研究通过蒙特卡洛模拟考查了分类精确性指数Entropy及其变式受样本量、潜类别数目、类别距离和指标个数及其组合的影响情况。研究结果表明:(1)尽管Entropy值与分类精确性高相关,但其值随类别数、样本量和指标数的变化而变化,很难确定... 本研究通过蒙特卡洛模拟考查了分类精确性指数Entropy及其变式受样本量、潜类别数目、类别距离和指标个数及其组合的影响情况。研究结果表明:(1)尽管Entropy值与分类精确性高相关,但其值随类别数、样本量和指标数的变化而变化,很难确定唯一的临界值;(2)其他条件不变的情况下,样本量越大,Entropy的值越小,分类精确性越差;(3)类别距离对分类精确性的影响具有跨样本量和跨类别数的一致性;(4)小样本(N=50~100)的情况下,指标数越多,Entropy的结果越好;(5)在各种条件下Entropy对分类错误率比其它变式更灵敏。 展开更多
关键词 潜剖面分析 分类精确性 entropy 潜类别距离 蒙特卡洛模拟
在线阅读 下载PDF
基于Entropy-Topsis模型的军工企业自主创新能力分析与测评 被引量:12
20
作者 尹航 石光 李柏洲 《运筹与管理》 CSSCI CSCD 北大核心 2013年第3期139-145,共7页
军工企业要提高自主创新能力、努力增强核心竞争力,必须明确地定位创新型企业的发展目标,转型升级军工企业的科技创新模式。本文基于军工企业的自主创新特征,剖析自主创新能力的影响因素,从研发能力、生产能力、投入能力、成果能力和管... 军工企业要提高自主创新能力、努力增强核心竞争力,必须明确地定位创新型企业的发展目标,转型升级军工企业的科技创新模式。本文基于军工企业的自主创新特征,剖析自主创新能力的影响因素,从研发能力、生产能力、投入能力、成果能力和管理能力等视角设置测评指标,建立Entropy-Topsis评价模型,继而测评25个典型军工企业的自主创新能力,验证测评指标和评价模型的科学性和适用性。 展开更多
关键词 军工企业 自主创新能力 指标体系 entropy—Topsis模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部