A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes...A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.展开更多
Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting fo...Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting for underground mines where the microseismic stations often lack azimuthal coverage.Thus,there is a need for a method to invert fracture mechanisms using waveforms acquired by a sparse microseismic network.Here,we present a novel,multi-scale framework to classify whether a rock crack contracts or dilates based on a single waveform.The framework consists of a deep learning model that is initially trained on 2400000+manually labelled field-scale seismic and microseismic waveforms acquired across 692 stations.Transfer learning is then applied to fine-tune the model on 300000+MT-labelled labscale acoustic emission waveforms from 39 individual experiments instrumented with different sensor layouts,loading,and rock types in training.The optimal model achieves over 86%F-score on unseen waveforms at both the lab-and field-scale.This model outperforms existing empirical methods in classification of rock fracture mechanisms monitored by a sparse microseismic network.This facilitates rapid assessment of,and early warning against,various rock engineering hazard such as induced earthquakes and rock bursts.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
Seismic data reconstruction can provide high-density sampling and regular input data for inversion and imaging,playing a crucial role in seismic data processing.In seismic data reconstruction,a common scenario involve...Seismic data reconstruction can provide high-density sampling and regular input data for inversion and imaging,playing a crucial role in seismic data processing.In seismic data reconstruction,a common scenario involves a significant distance between the source and the first receiver,which makes it unattainable to acquire near-offset data.A new workflow for seismic data extrapolation is proposed to address this issue,which is based on a multi-scale dynamic time warping(MS-DTW)algorithm.MS-DTW can accurately calculate the time-shift between two time series and is a robust method for predicting time-offset(t-x)domain data.Using the time-shift calculated by the MS-DTW as the basic input,predict the two-way traveltime(TWT)of other traces based on the TWT of the reference trace.Perform autoregressive polynomial fitting on TWT and extrapolate TWT based on the fitted polynomial coefficients.Extract amplitude information from the TWT curve,fit the amplitude curve,and extrapolate the amplitude using polynomial coefficients.The proposed workflow does not necessitate data conversion to other domains and does not require prior knowledge of underground geological information.It applies to both isotropic and anisotropic media.The effectiveness of the workflow was verified through synthetic data and field data.The results show that compared with the method of predictive painting based on local slope,this approach can accurately predict missing near-offset seismic signals and demonstrates good robustness to noise.展开更多
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ...Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.展开更多
Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ po...Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.展开更多
Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency respo...Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency response becomes much richer in the Laplace mixed domains, one novel Bayesian impedance inversion approach in the complex Laplace mixed domains is established in this study to solve the model dependency problem. The derivation of a Laplace mixed-domain formula of the Robinson convolution is the first step in our work. With this formula, the Laplace seismic spectrum, the wavelet spectrum and time-domain reflectivity are joined together. Next, to improve inversion stability, the object inversion function accompanied by the initial constraint of the linear increment model is launched under a Bayesian framework. The likelihood function and prior probability distribution can be combined together by Bayesian formula to calculate the posterior probability distribution of subsurface parameters. By achieving the optimal solution corresponding to maximum posterior probability distribution, the low-frequency background of subsurface parameters can be obtained successfully. Then, with the regularization constraint of estimated low frequency in the Laplace mixed domains, multi-scale Bayesian inversion inthe pure frequency domain is exploited to obtain the absolute model parameters. The effectiveness, anti-noise capability and lateral continuity of Laplace mixed-domain inversion are illustrated by synthetic tests. Furthermore,one field case in the east of China is discussed carefully with different input frequency components and different inversion algorithms. This provides adequate proof to illustrate the reliability improvement in low-frequency estimation and resolution enhancement of subsurface parameters, in comparison with conventional Bayesian inversion in the frequency domain.展开更多
In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-...In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.展开更多
Envelope inversion(El)is an efficient tool to mitigate the nonlinearity of conventional full waveform inversion(FWI)by utilizing the ultralow-frequency component in the seismic data.However,the performance of envelope...Envelope inversion(El)is an efficient tool to mitigate the nonlinearity of conventional full waveform inversion(FWI)by utilizing the ultralow-frequency component in the seismic data.However,the performance of envelope inversion depends on the frequency component and initial model to some extent.To improve the convergence ability and avoid the local minima issue,we propose a convolution-based envelope inversion method to update the low-wavenumber component of the velocity model.Besides,the multi-scale inversion strategy(MCEI)is also incorporated to improve the inversion accuracy while guaranteeing the global convergence.The success of this method relies on modifying the original envelope data to expand the overlap region between observed and modeled envelope data,which in turn expands the global minimum basin of misfit function.The accurate low-wavenumber component of the velocity model provided by MCEI can be used as the migration model or an initial model for conventional FWI.The numerical tests on simple layer model and complex BP 2004 model verify that the proposed method is more robust than El even when the initial model is coarse and the frequency component of data is high.展开更多
When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully develope...When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.展开更多
Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied usin...Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.展开更多
The multi-scale expression of enormously complicated laneway data requires differentiation of both contents and the way the contents are expressed. To accomplish multi-scale expression laneway data must support multi-...The multi-scale expression of enormously complicated laneway data requires differentiation of both contents and the way the contents are expressed. To accomplish multi-scale expression laneway data must support multi-scale transformation and have consistent topological relationships. Although the laneway data generated by traverse survey-ing is non-scale data it is still impossible to construct a multi-scale spatial database directly from it. In this paper an al-gorithm is presented to first calculate the laneway mid-line to support multi-scale transformation; then to express topo-logical relationships arising from the data structure; and,finally,a laneway spatial database is built and multi-scale ex-pression is achieved using components GIS-SuperMap Objects. The research result is of great significance for improv-ing the efficiency of laneway data storage and updating,for ensuring consistency of laneway data expression and for extending the potential value of a mine spatial database.展开更多
Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagne...Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.展开更多
A multi-scale numerical method coupled with the reactor,sheath and trench model is constructed to simulate dry etching of SiO_2 in inductively coupled C_4F_8 plasmas.Firstly,ion and neutral particle densities in the r...A multi-scale numerical method coupled with the reactor,sheath and trench model is constructed to simulate dry etching of SiO_2 in inductively coupled C_4F_8 plasmas.Firstly,ion and neutral particle densities in the reactor are decided using the CFD-ACE+ commercial software.Then,the ion energy and angular distributions(IEDs and IADs) are obtained in the sheath model with the sheath boundary conditions provided with CFD-ACE+.Finally,the trench profile evolution is simulated in the trench model.What we principally focus on is the effects of the discharge parameters on the etching results.It is found that the discharge parameters,including discharge pressure,radio-frequency(rf) power,gas mixture ratios,bias voltage and frequency,have synergistic effects on IEDs and IADs on the etched material surface,thus further affecting the trench profiles evolution.展开更多
In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and t...In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained.展开更多
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs...Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.展开更多
In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluo...In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluorinated poly-m-phenyleneisophthalamide(PMIA)polymer solution.The prepared multiscale TiO_(2)-assisted gel separator presented relatively high porosity,small aperture,giving rise to superior affinity to electrolyte and sufficient active sites to accelerate lithium ions migration.Meanwhile,the asfabricated multifunctional GPE also rendered outstanding heat-resistance and well-distributed lithiumions flux,and the mutual overlaps between the coarse fibers and the fine fibers within the multi-scale nanofiber membrane provided a strong skeleton support,which in turn laid a solid footing stone for high-security and dendrite-proof batteries.Particularly,the nano-TiO_(2) particles within PMIA membrane acted as"gatekeepers",which can not only resist the growth of lithium dendrites,but also intercept the dissolved polysulfide on cathode side.Based on these merits,the gel PMIA-based lithium cobalt(LCO)/lithium battery obtained the remarkably improved rate capability and cycle performances on account of superior ionic conductivity,steady anodic stability window and weakened polarization behavior.Meanwhile,the resultant lithium-sulfur cell also delivered the outstanding cycling stability with the aid of the greatly prevented"shuttle effect"of dissolved lithium polysulfides based on the physical trapping and chemical binding of the prepared GPE to polysulfides species.This work proved that the addition of functional inorganic nanoparticles similar with TiO_(2) in multi-scale gel PMIA membrane can enhance the lithium ions transport capability,resist the growth of lithium dendrites as well as inhibit the shuttle effect of polysulfides,which would prompt a great development for dendrite-blocking and polysulfideinhibiting lithium-metal cells.展开更多
基金This study was supported by the National Natural Science Foundation of China(U22B2075,52274056,51974356).
文摘A large number of nanopores and complex fracture structures in shale reservoirs results in multi-scale flow of oil. With the development of shale oil reservoirs, the permeability of multi-scale media undergoes changes due to stress sensitivity, which plays a crucial role in controlling pressure propagation and oil flow. This paper proposes a multi-scale coupled flow mathematical model of matrix nanopores, induced fractures, and hydraulic fractures. In this model, the micro-scale effects of shale oil flow in fractal nanopores, fractal induced fracture network, and stress sensitivity of multi-scale media are considered. We solved the model iteratively using Pedrosa transform, semi-analytic Segmented Bessel function, Laplace transform. The results of this model exhibit good agreement with the numerical solution and field production data, confirming the high accuracy of the model. As well, the influence of stress sensitivity on permeability, pressure and production is analyzed. It is shown that the permeability and production decrease significantly when induced fractures are weakly supported. Closed induced fractures can inhibit interporosity flow in the stimulated reservoir volume (SRV). It has been shown in sensitivity analysis that hydraulic fractures are beneficial to early production, and induced fractures in SRV are beneficial to middle production. The model can characterize multi-scale flow characteristics of shale oil, providing theoretical guidance for rapid productivity evaluation.
基金supported by Western Research Interdisciplinary Initiative R6259A03.
文摘Rock fracture mechanisms can be inferred from moment tensors(MT)inverted from microseismic events.However,MT can only be inverted for events whose waveforms are acquired across a network of sensors.This is limiting for underground mines where the microseismic stations often lack azimuthal coverage.Thus,there is a need for a method to invert fracture mechanisms using waveforms acquired by a sparse microseismic network.Here,we present a novel,multi-scale framework to classify whether a rock crack contracts or dilates based on a single waveform.The framework consists of a deep learning model that is initially trained on 2400000+manually labelled field-scale seismic and microseismic waveforms acquired across 692 stations.Transfer learning is then applied to fine-tune the model on 300000+MT-labelled labscale acoustic emission waveforms from 39 individual experiments instrumented with different sensor layouts,loading,and rock types in training.The optimal model achieves over 86%F-score on unseen waveforms at both the lab-and field-scale.This model outperforms existing empirical methods in classification of rock fracture mechanisms monitored by a sparse microseismic network.This facilitates rapid assessment of,and early warning against,various rock engineering hazard such as induced earthquakes and rock bursts.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金the National Natural Science Foundation of China(42374133)the Beijing Nova Program(2022056)for their funding of this research。
文摘Seismic data reconstruction can provide high-density sampling and regular input data for inversion and imaging,playing a crucial role in seismic data processing.In seismic data reconstruction,a common scenario involves a significant distance between the source and the first receiver,which makes it unattainable to acquire near-offset data.A new workflow for seismic data extrapolation is proposed to address this issue,which is based on a multi-scale dynamic time warping(MS-DTW)algorithm.MS-DTW can accurately calculate the time-shift between two time series and is a robust method for predicting time-offset(t-x)domain data.Using the time-shift calculated by the MS-DTW as the basic input,predict the two-way traveltime(TWT)of other traces based on the TWT of the reference trace.Perform autoregressive polynomial fitting on TWT and extrapolate TWT based on the fitted polynomial coefficients.Extract amplitude information from the TWT curve,fit the amplitude curve,and extrapolate the amplitude using polynomial coefficients.The proposed workflow does not necessitate data conversion to other domains and does not require prior knowledge of underground geological information.It applies to both isotropic and anisotropic media.The effectiveness of the workflow was verified through synthetic data and field data.The results show that compared with the method of predictive painting based on local slope,this approach can accurately predict missing near-offset seismic signals and demonstrates good robustness to noise.
基金supported by the International Research Center of Big Data for Sustainable Development Goals under Grant No.CBAS2022GSP05the Open Fund of State Key Laboratory of Remote Sensing Science under Grant No.6142A01210404the Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant No.KLIGIP-2022-B03.
文摘Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision.
基金supported by the National Nature Science Foundation of China (Nos. 51971111, 52273247)the facilities in the Center for Microscopy and Analysis at Nanjing University of Aeronautics and Astronautics and the Fund of Prospective Layout of Scientific Research for NUAA (Nanjing University of Aeronautics and Astronautics (No. ILA220461A22)。
文摘Wearable devices with efficient thermal management and electromagnetic interference(EMI) shielding are highly desirable for improving human comfort and safety. Herein, a multifunctional wearable carbon fibers(CF) @ polyaniline(PANI)/silver nanowires(Ag NWs) composites with a “branch-trunk” interlocked micro/nanostructure were achieved through "three-in-one" multi-scale design. The reasonable assembly of the three kinds of one-dimensional(1D) materials can fully exert their excellent properties i.e., the superior flexibility of CF, the robustness of PANI, and the splendid conductivity of Ag NWs. Consequently, the constructed flexible composite demonstrates enhanced mechanical properties with a tensile stress of 1.2 MPa, which was almost 6 times that of the original material. This is mainly attributed to the fact that the PNAI(branch) was firmly attached to the CF(trunk) through polydopamine(PDA), forming a robust interlocked structure. Meanwhile, the composite possesses excellent thermal insulation and heat preservation capacity owing to the synergistically low thermal conductivity and emissivity. More importantly, the conductive path of the composite established by the three 1D materials greatly improved its EMI shielding property and Joule heating performance at low applied voltage. This work paves the way for rational utilization of the intrinsic properties of 1D materials, as well as provides a promising strategy for designing wearable electromagnetic protection and thermal energy management devices.
基金the sponsorship of National Natural Science Foundation Project(U1562215,41604101)National Grand Project for Science and Technology(2016ZX05024-004,2017ZX05032-003)+2 种基金the Post-graduate Innovation Program of China University of Petroleum(YCX2017005)Science Foundation from SINOPEC Key Laboratory of Geophysics(wtyjy-wx2016-04-10)the Fundamental Research Funds for the Central Universities
文摘Seismic inversion performed in the time or frequency domain cannot always recover the long-wavelength background of subsurface parameters due to the lack of low-frequency seismic records. Since the low-frequency response becomes much richer in the Laplace mixed domains, one novel Bayesian impedance inversion approach in the complex Laplace mixed domains is established in this study to solve the model dependency problem. The derivation of a Laplace mixed-domain formula of the Robinson convolution is the first step in our work. With this formula, the Laplace seismic spectrum, the wavelet spectrum and time-domain reflectivity are joined together. Next, to improve inversion stability, the object inversion function accompanied by the initial constraint of the linear increment model is launched under a Bayesian framework. The likelihood function and prior probability distribution can be combined together by Bayesian formula to calculate the posterior probability distribution of subsurface parameters. By achieving the optimal solution corresponding to maximum posterior probability distribution, the low-frequency background of subsurface parameters can be obtained successfully. Then, with the regularization constraint of estimated low frequency in the Laplace mixed domains, multi-scale Bayesian inversion inthe pure frequency domain is exploited to obtain the absolute model parameters. The effectiveness, anti-noise capability and lateral continuity of Laplace mixed-domain inversion are illustrated by synthetic tests. Furthermore,one field case in the east of China is discussed carefully with different input frequency components and different inversion algorithms. This provides adequate proof to illustrate the reliability improvement in low-frequency estimation and resolution enhancement of subsurface parameters, in comparison with conventional Bayesian inversion in the frequency domain.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11774088 and 11474090)。
文摘In high intensity focused ultrasound(HIFU)treatment,it is crucial to accurately identify denatured and normal biological tissues.In this paper,a novel method based on compressed sensing(CS)and refined composite multi-scale fuzzy entropy(RCMFE)is proposed.First,CS is used to denoise the HIFU echo signals.Then the multi-scale fuzzy entropy(MFE)and RCMFE of the denoised HIFU echo signals are calculated.This study analyzed 90 cases of HIFU echo signals,including 45 cases in normal status and 45 cases in denatured status,and the results show that although both MFE and RCMFE can be used to identify denatured tissues,the intra-class distance of RCMFE on each scale factor is smaller than MFE,and the inter-class distance is larger than MFE.Compared with MFE,RCMFE can calculate the complexity of the signal more accurately and improve the stability,compactness,and separability.When RCMFE is selected as the characteristic parameter,the RCMFE difference between denatured and normal biological tissues is more evident than that of MFE,which helps doctors evaluate the treatment effect more accurately.When the scale factor is selected as 16,the best distinguishing effect can be obtained.
基金supported by the National Science Foundation(Grant No.41104069,41274124)National“973 Project”(Grant No.2014CB239006)+1 种基金National Oil and Gas Project(Grant No.2016ZX05014001,2016ZX05002)supported by Tai Shan Science Foundation for the Excellent Youth Scholars.
文摘Envelope inversion(El)is an efficient tool to mitigate the nonlinearity of conventional full waveform inversion(FWI)by utilizing the ultralow-frequency component in the seismic data.However,the performance of envelope inversion depends on the frequency component and initial model to some extent.To improve the convergence ability and avoid the local minima issue,we propose a convolution-based envelope inversion method to update the low-wavenumber component of the velocity model.Besides,the multi-scale inversion strategy(MCEI)is also incorporated to improve the inversion accuracy while guaranteeing the global convergence.The success of this method relies on modifying the original envelope data to expand the overlap region between observed and modeled envelope data,which in turn expands the global minimum basin of misfit function.The accurate low-wavenumber component of the velocity model provided by MCEI can be used as the migration model or an initial model for conventional FWI.The numerical tests on simple layer model and complex BP 2004 model verify that the proposed method is more robust than El even when the initial model is coarse and the frequency component of data is high.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB720101 and 2012CB720103)the National Natural Science Foundation of China(Grant Nos.11272233,11332006,and 11411130150)
文摘When using a miniature single sensor boundary layer probe, the time sequences of the stream-wise velocity in the turbulent boundary layer (TBL) are measured by using a hot wire anemometer. Beneath the fully developed TBL, the wall pressure fluctuations are attained by a microphone mechanism with high spatial resolution. Analysis on the statistic and spectrum properties of velocity and wall pressure reveals the relationship between the wall pressure fluctuation and the energy-containing structure in the buffer layer of the TBL. Wavelet transform shows the multi-scale natures of coherent structures contained in both signals of velocity and pressure. The most intermittent wall pressure scale is associated with the coherent structure in the buffer layer. Meanwhile the most energetic scale of velocity fluctuation at y+ = 14 provides a specific frequency f9 ≈ 147 Hz for wall actuating control with Ret = 996.
基金The first author would like to express sincere appreciation for the scholarship provided by China Scholarship Council(No.202006430006)and University of Wollongongfinancially supported by the ACARP Project C28006+1 种基金the National Key Research and Development Program of China(No.2018YFC0808301)the Natural Science Foundation of Beijing Municipality,China(No.8192036)。
文摘Well-developed pores and cracks in coal reservoirs are the main venues for gas storage and migration.To investigate the multi-scale pore fractal characteristics,six coal samples of different rankings were studied using high-pressure mercury injection(HPMI),low-pressure nitrogen adsorption(LPGA-N2),and scanning electron microscopy(SEM)test methods.Based on the Frankel,Halsey and Hill(FHH)fractal theory,the Menger sponge model,Pores and Cracks Analysis System(PCAS),pore volume complexity(D_(v)),coal surface irregularity(Ds)and pore distribution heterogeneity(D_(p))were studied and evaluated,respectively.The effect of three fractal dimensions on the gas adsorption ability was also analyzed with high-pressure isothermal gas adsorption experiments.Results show that pore structures within these coal samples have obvious fractal characteristics.A noticeable segmentation effect appears in the Dv1and Dv2fitting process,with the boundary size ranging from 36.00 to 182.95 nm,which helps differentiate diffusion pores and seepage fractures.The D values show an asymmetric U-shaped trend as the coal metamorphism increases,demonstrating that coalification greatly affects the pore fractal dimensions.The three fractal dimensions can characterize the difference in coal microstructure and reflect their influence on gas adsorption ability.Langmuir volume(V_(L))has an evident and positive correlation with Dsvalues,whereas Langmuir pressure(P_(L))is mainly affected by the combined action of Dvand Dp.This study will provide valuable knowledge for the appraisal of coal seam gas reservoirs of differently ranked coals.
基金Project 2005B018 supported by the Science Foundation of China University of Mining and Technology
文摘The multi-scale expression of enormously complicated laneway data requires differentiation of both contents and the way the contents are expressed. To accomplish multi-scale expression laneway data must support multi-scale transformation and have consistent topological relationships. Although the laneway data generated by traverse survey-ing is non-scale data it is still impossible to construct a multi-scale spatial database directly from it. In this paper an al-gorithm is presented to first calculate the laneway mid-line to support multi-scale transformation; then to express topo-logical relationships arising from the data structure; and,finally,a laneway spatial database is built and multi-scale ex-pression is achieved using components GIS-SuperMap Objects. The research result is of great significance for improv-ing the efficiency of laneway data storage and updating,for ensuring consistency of laneway data expression and for extending the potential value of a mine spatial database.
基金supported by the National Natural Science Foundation of China(Nos.51973142,52033005,52003169).
文摘Highly conductive polymer composites(CPCs) with excellent mechanical flexibility are ideal materials for designing excellent electromagnetic interference(EMI) shielding materials,which can be used for the electromagnetic interference protection of flexible electronic devices.It is extremely urgent to fabricate ultra-strong EMI shielding CPCs with efficient conductive networks.In this paper,a novel silver-plated polylactide short fiber(Ag@PL ASF,AAF) was fabricated and was integrated with carbon nanotubes(CNT) to construct a multi-scale conductive network in polydimethylsiloxane(PDMS) matrix.The multi-scale conductive network endowed the flexible PDMS/AAF/CNT composite with excellent electrical conductivity of 440 S m-1and ultra-strong EMI shielding effectiveness(EMI SE) of up to 113 dB,containing only 5.0 vol% of AAF and 3.0 vol% of CNT(11.1wt% conductive filler content).Due to its excellent flexibility,the composite still showed 94% and 90% retention rates of EMI SE even after subjected to a simulated aging strategy(60℃ for 7 days) and 10,000 bending-releasing cycles.This strategy provides an important guidance for designing excellent EMI shielding materials to protect the workspace,environment and sensitive circuits against radiation for flexible electronic devices.
基金supported by National Natural Science Foundation of China(No.11375040)the Important National Science&Technology Specific Project of China(No.2011ZX02403-002)
文摘A multi-scale numerical method coupled with the reactor,sheath and trench model is constructed to simulate dry etching of SiO_2 in inductively coupled C_4F_8 plasmas.Firstly,ion and neutral particle densities in the reactor are decided using the CFD-ACE+ commercial software.Then,the ion energy and angular distributions(IEDs and IADs) are obtained in the sheath model with the sheath boundary conditions provided with CFD-ACE+.Finally,the trench profile evolution is simulated in the trench model.What we principally focus on is the effects of the discharge parameters on the etching results.It is found that the discharge parameters,including discharge pressure,radio-frequency(rf) power,gas mixture ratios,bias voltage and frequency,have synergistic effects on IEDs and IADs on the etched material surface,thus further affecting the trench profiles evolution.
基金supported by Science and Technology on Reactor System Design Technology Laboratory,Chengdu,China(LRSDT2020106)
文摘In this study,a multi-physics and multi-scale coupling program,Fluent/KMC-sub/NDK,was developed based on the user-defined functions(UDF)of Fluent,in which the KMC-sub-code is a sub-channel thermal-hydraulic code and the NDK code is a neutron diffusion code.The coupling program framework adopts the"master-slave"mode,in which Fluent is the master program while NDK and KMC-sub are coupled internally and compiled into the dynamic link library(DLL)as slave codes.The domain decomposition method was adopted,in which the reactor core was simulated by NDK and KMC-sub,while the rest of the primary loop was simulated using Fluent.A simulation of the reactor shutdown process of M2LFR-1000 was carried out using the coupling program,and the code-to-code verification was performed with ATHLET,demonstrating a good agreement,with absolute deviation was smaller than 0.2%.The results show an obvious thermal stratification phenomenon during the shutdown process,which occurs 10 s after shutdown,and the change in thermal stratification phenomena is also captured by the coupling program.At the same time,the change in the neutron flux density distribution of the reactor was also obtained.
基金supported by the National Key Research and Development Program of China under grant 2016YFC0802904National Natural Science Foundation of China under grant61671470the Postdoctoral Science Foundation Funded Project of China under grant 2017M623423。
文摘Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.
基金supported by the National Natural Science Foundation of China(51678411)the National Key Technology R&D Program(2016YFB0303300)the Science and Technology Plans of Tianjin(Nos.19PTSYJC00010 and 18PTSYJC00180)。
文摘In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluorinated poly-m-phenyleneisophthalamide(PMIA)polymer solution.The prepared multiscale TiO_(2)-assisted gel separator presented relatively high porosity,small aperture,giving rise to superior affinity to electrolyte and sufficient active sites to accelerate lithium ions migration.Meanwhile,the asfabricated multifunctional GPE also rendered outstanding heat-resistance and well-distributed lithiumions flux,and the mutual overlaps between the coarse fibers and the fine fibers within the multi-scale nanofiber membrane provided a strong skeleton support,which in turn laid a solid footing stone for high-security and dendrite-proof batteries.Particularly,the nano-TiO_(2) particles within PMIA membrane acted as"gatekeepers",which can not only resist the growth of lithium dendrites,but also intercept the dissolved polysulfide on cathode side.Based on these merits,the gel PMIA-based lithium cobalt(LCO)/lithium battery obtained the remarkably improved rate capability and cycle performances on account of superior ionic conductivity,steady anodic stability window and weakened polarization behavior.Meanwhile,the resultant lithium-sulfur cell also delivered the outstanding cycling stability with the aid of the greatly prevented"shuttle effect"of dissolved lithium polysulfides based on the physical trapping and chemical binding of the prepared GPE to polysulfides species.This work proved that the addition of functional inorganic nanoparticles similar with TiO_(2) in multi-scale gel PMIA membrane can enhance the lithium ions transport capability,resist the growth of lithium dendrites as well as inhibit the shuttle effect of polysulfides,which would prompt a great development for dendrite-blocking and polysulfideinhibiting lithium-metal cells.