期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于图卷积的自适应特征融合MRI脑肿瘤分割方法
1
作者 张野 张睦卿 +1 位作者 袁学刚 牛大田 《河北科技大学学报》 北大核心 2025年第4期395-404,共10页
针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷... 针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷积推理模块,捕获额外的远程上下文特征;在编解码器中引入动态蛇形卷积(dynamic snake convolution, DSConv)能更精准地契合肿瘤形态各异的特点,提高边缘特征提取能力,从而有效提升分割精度;在解码器中引入自适应空间特征融合(adaptive spatial feature fusion, ASFF)模块,通过整合多个编码器块捕获的语义信息提升特征融合效果。在公开的BraTS 2019—2021数据集上的评估表明,整个肿瘤、肿瘤核心和增强肿瘤的Dice值分别为90.70%/90.70%/91.00%、84.90%/84.00%/88.80%和77.30%/77.40%/82.50%,证明了ASGU-Net在脑肿瘤分割任务中的有效性。ASGU-Net可有效解决全局信息捕获不足和特征融合不充分的问题,为脑肿瘤高精度自动化分割提供了参考。 展开更多
关键词 计算机神经网络 脑肿瘤分割 三维U-Net 图卷积推理瓶颈层 动态蛇形卷积 自适应空间特征融合
在线阅读 下载PDF
变工况下动态卷积域对抗图神经网络故障诊断
2
作者 王桐 王晨程 +2 位作者 邰宇 欧阳敏 陈立伟 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第7期1406-1414,共9页
针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结... 针对基于无监督域自适应故障诊断方法忽略了域间数据结构信息、传统域对齐平均最大差异法全局泛化能力差等问题,本文提出一种基于无监督域自适应理论的动态卷积域对抗图神经网络故障诊断模型,分别通过对数据的类别标签、域标签和数据结构信息进行建模。通过分类器和域鉴别器分别建模类别标签和域标签,通过图神经网络将数据结构信息嵌入到实例图节点中,利用高斯Wasserstein距离来度量不同领域的实例图之间的差异。本文对比了不同工况下共14种迁移任务在各模型下故障识别的准确率。实验结果表明:基于动态卷积的域对抗图神经网络模型在变工况下的故障诊断效果均优于其他对比模型,且模型性能稳定。 展开更多
关键词 无监督域自适应 动态卷积 域对抗 图神经网络 图生成 高斯Wasserstein距离 故障诊断 变工况
在线阅读 下载PDF
多尺度视角特征动态融合的盗窃犯罪预测模型 被引量:2
3
作者 石拓 张齐 石磊 《智能系统学报》 CSCD 北大核心 2022年第6期1104-1112,共9页
针对盗窃犯罪时空预测特征融合不精、时序动态适应性不足问题,提出自注意力和多尺度多视角特征动态融合的预测模型。首先,以盗窃发案的位置信息为基础,将数据投射到地图栅格内,通过构建一种可将不同时序长度案件数据匹配为自适应长度数... 针对盗窃犯罪时空预测特征融合不精、时序动态适应性不足问题,提出自注意力和多尺度多视角特征动态融合的预测模型。首先,以盗窃发案的位置信息为基础,将数据投射到地图栅格内,通过构建一种可将不同时序长度案件数据匹配为自适应长度数据的方法,并组合向量映射后的天气、作案时间、地理位置等属性,构造多维度特征融合的输入向量;其次,采用自注意力机制生成多视角特征动态融合的向量;最后,通过采用多尺度窗口CNN对多视角特征动态融合向量进行编码后送入分类器,预测出每个地图栅格内的发案态势。在某市盗窃数据集上验证,本文方法在3种地理栅格尺度下,预测准确率最高可达到0.899,显著优于其他对比模型。 展开更多
关键词 犯罪预测 自注意力机制 多尺度特征融合 卷积神经网络 动态自适应 分类器 时序预测 分布式表征
在线阅读 下载PDF
基于多通道融合多尺度自适应残差学习的行星齿轮箱故障诊断研究 被引量:2
4
作者 陈奇 陈长征 安文杰 《机电工程》 CAS 北大核心 2023年第7期1031-1038,共8页
针对风电机组行星齿轮箱振动激励源多、故障诊断精度低的问题,提出了一种基于多通道融合多尺度动态自适应残差学习(MC-MSDARL)的行星齿轮箱故障诊断方法。首先,采用多尺度动态自适应卷积神经网络(MSDAC)对不同尺度卷积核权重进行了动态... 针对风电机组行星齿轮箱振动激励源多、故障诊断精度低的问题,提出了一种基于多通道融合多尺度动态自适应残差学习(MC-MSDARL)的行星齿轮箱故障诊断方法。首先,采用多尺度动态自适应卷积神经网络(MSDAC)对不同尺度卷积核权重进行了动态调整,自适应提取了单通道数据的局部和全局特征;其次,通过将MSDAC与残差学习结合,提升了模型的学习能力;最后,采用MC-MSDAR将多通道数据的多尺度特征进行了融合,输入到SoftMax层,实现了故障识别与分类。研究结果表明:基于MC-MSDAR的方法进行行星齿轮箱故障诊断的准确率为97%,验证了该方法的有效性;通过与其他深度学习方法进行对比,该方法具有更好的泛化能力。 展开更多
关键词 故障诊断 风电机组 行星齿轮箱 残差学习 多尺度学习 多尺度动态自适应卷积神经网络
在线阅读 下载PDF
基于多表示动态自适应的不同工况下滚动轴承故障诊断 被引量:2
5
作者 朱继扬 孙虎儿 +2 位作者 张天源 赵扬 白晓艺 《机电工程》 CAS 北大核心 2023年第2期178-185,203,共9页
在对不同工况下的滚动轴承进行故障诊断时,要收集足够多标记的故障样本是非常困难的。为此,以原始振动信号作为神经网络的输入,通过多表示动态自适应(MRDA)算法多表示对齐可迁移的特征、自适应动态的衡量边缘分布和条件分布相对重要性,... 在对不同工况下的滚动轴承进行故障诊断时,要收集足够多标记的故障样本是非常困难的。为此,以原始振动信号作为神经网络的输入,通过多表示动态自适应(MRDA)算法多表示对齐可迁移的特征、自适应动态的衡量边缘分布和条件分布相对重要性,从而构建了一种新的深度迁移模型,即一维多表示空洞动态自适应迁移网络(1D MRDDATN)。首先,对迁移学习数据分布进行了问题分析,对DDA进行了理论推导;然后,在一维空洞卷积基础上,创建了一维多表示空洞卷积神经网络(1D MRDCNN),并提出了MRDA算法和多表示动态自适应结构(MRDAM),形成了一维多表示空洞动态自适应迁移网络(1D MRDDATN);最后,采用美国凯斯西储大学(CWRU)的滚动轴承数据集进行了实验验证。研究结果表明:与传统的深度迁移学习方法相比,上述方法的平均诊断准确率有所提升,可达到98%以上;MRDA通过多表示对齐来完成不同工况下的跨域分类任务,自适应地捕获不同方面的信息,可以获得更好的性能。 展开更多
关键词 不同工况 一维多表示空洞动态自适应迁移网络 故障样本 深度迁移学习 多表示动态自适应算法 神经网络 一维多表示空洞卷积神经网络
在线阅读 下载PDF
海上风电场维护任务动态调度策略 被引量:8
6
作者 符杨 张耀楠 +2 位作者 刘璐洁 魏书荣 任浩瀚 《电力系统自动化》 EI CSCD 北大核心 2021年第21期48-56,共9页
在海上风浪、载荷等因素的耦合作用下,风机状态数据波动迅速,时变工况下风机状态特征的敏感性导致维护需求的动态变化,增加了风电场维护任务精准调度的难度。文中提出了海上时变工况下考虑风机状态风险态势的风电场维护任务动态调度方... 在海上风浪、载荷等因素的耦合作用下,风机状态数据波动迅速,时变工况下风机状态特征的敏感性导致维护需求的动态变化,增加了风电场维护任务精准调度的难度。文中提出了海上时变工况下考虑风机状态风险态势的风电场维护任务动态调度方法。首先,利用模糊C均值聚类算法划分风机时变工况,通过采用改进联合领域自适应卷积神经网络最小化特征分布差异,实现时变工况下风机状态特征自适应提取。然后,根据部件状态序列利用马尔可夫模型描述各部件的初始状态转移矩阵,考虑到不完全维护对机组部件性能的影响,引入部件性能退化过程,建立了考虑风机自适应状态评估的风险态势预测模型。同时,提出以维护船只、人员、工作时长等条件为约束,以单位电量调度维护成本最小为目标的海上风电场维护任务动态调度方法,实现了时变工况下海上风电场维护任务的动态调度。最后,以某海上风电场为例,验证了所提方法的有效性和经济性。 展开更多
关键词 海上风电场 动态调度 自适应卷积神经网络 风险态势预测
在线阅读 下载PDF
煤矿井下行人检测算法 被引量:7
7
作者 杨清翔 吕晨 +1 位作者 冯晨晨 王振宇 《工矿自动化》 北大核心 2020年第1期80-84,共5页
针对井下光照不均匀、行人特征与背景的相似度高等导致基于计算机视觉的行人检测技术在井下应用面临很大挑战的问题,提出采用Faster区域卷积神经网络(RCNN)进行煤矿井下行人检测。Faster RCNN行人检测算法采用区域建议网络(RPN)生成候... 针对井下光照不均匀、行人特征与背景的相似度高等导致基于计算机视觉的行人检测技术在井下应用面临很大挑战的问题,提出采用Faster区域卷积神经网络(RCNN)进行煤矿井下行人检测。Faster RCNN行人检测算法采用区域建议网络(RPN)生成候选区域,RPN与Fast RCNN共享卷积层,以提高网络训练和检测速度;在图像特征提取过程中采用动态自适应池化方法对不同池化域进行自适应池化操作,提高了检测准确性。实验结果表明,该算法对于不同环境下图像中的行人均具有较好的检测效果。 展开更多
关键词 井下行人检测 深度学习 区域卷积神经网络 区域建议网络 共享卷积层 动态自适应池化
在线阅读 下载PDF
动态奇异值网络的三维模型识别
8
作者 罗文劼 张涵 +1 位作者 倪鹏 田学东 《小型微型计算机系统》 CSCD 北大核心 2020年第3期532-538,共7页
卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化... 卷积神经网络的兴起产生了大量基于视图的三维模型识别方法,不同的视图融合方式影响了网络模型的特征提取性能.本文提出了一种自适应视图融合方法,将视图的动态奇异值信息作为三维模型的特征描述符,获得三维模型全局特征的方式由区域化分块、自适应SVD(Singular Value Decomposition)分解和维度压缩三部分组成,通过分块后的子区域极大地关注三维模型的局部特征,并用自适应的方法判断每个局部特征的影响大小,最后维度压缩去除较小影响的数值.动态奇异值网络是将这三部分作为卷积神经网络的后端,形成一个端对端(end to end)可训练的三维模型特征提取框架.与当今先进方法相比,在ModelNet40数据集上的分类和检索结果分别提升了1. 2%和0. 8%,在ModelNet10和ModelNet40的Top-10平均检索精度分别提高了3. 7%和4%. 展开更多
关键词 三维模型识别 卷积神经网络 动态奇异值 自适应视图融合
在线阅读 下载PDF
基于动态自适应门控图卷积网络的交通拥堵预测
9
作者 王庆荣 高桓伊 +2 位作者 朱昌锋 何润田 慕壮壮 《华南理工大学学报(自然科学版)》 2025年第9期31-47,共17页
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面... 随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。 展开更多
关键词 交通拥堵预测 图神经网络 动态自适应门控 聚类算法 门控时间卷积网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部