期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
Chinese named entity recognition with multi-network fusion of multi-scale lexical information
1
作者 Yan Guo Hong-Chen Liu +3 位作者 Fu-Jiang Liu Wei-Hua Lin Quan-Sen Shao Jun-Shun Su 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期53-80,共28页
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ... Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision. 展开更多
关键词 Bi-directional long short-term memory(BiLSTM) Chinese named entity recognition(CNER) Iterated dilated convolutional neural network(IDCNN) Multi-network integration multi-scale lexical features
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
2
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis Deep learning multi-scale convolution Open-circuit convolutional neural network
在线阅读 下载PDF
基于融合卷积神经网络的车辆多目标检测方法
3
作者 曹佳 郑秋梅 段泓舟 《激光杂志》 北大核心 2025年第1期208-213,共6页
在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两... 在实际场景中,车辆目标往往会被其他车辆、建筑物等对象遮挡,背景也可能非常复杂,为了保障检测精度,提出一种基于融合卷积神经网络的车辆多目标检测方法。采用激光雷达采集车辆目标图像,将采集的车辆行驶图像根据其车道线特征划分为两侧区域,将车道线以内的区域作为车辆多目标检测初始感兴趣区域(ROI),在ROI中采用车底阴影假设区域分割法获取车辆检测目标的假设区域。在原始卷积神经网络的基础上作进一步优化,设计可变形卷积神经网络(DF-R-CNN)模型,将得到的假设区域作为网络模型所需的车辆多目标检测候选区域,通过该模型实现车辆多目标的精准检测。实验结果表明,所提方法的召回率最高值达到了85%,损失函数最低值约为1.8,说明其具有较高的检测精度和检测效果。 展开更多
关键词 卷积神经网络 车道线划分 感兴趣区域ROI 可变形卷积神经网络 车辆多目标检测
在线阅读 下载PDF
大坝边坡测斜孔变形自动化监测及变形模式识别研究
4
作者 冉鲁光 周小燕 +4 位作者 李双平 张斌 刘祖强 王华为 李建川 《水电能源科学》 北大核心 2025年第3期147-151,共5页
针对大坝边坡深部位移监测的自动化需求,开发了一种基于物联网的钻孔测斜机器人系统,并创新性地结合一维卷积神经网络模型(1D CNN)实现边坡变形模式的智能预测。通过自主研发的硬件主控板,实现了测斜仪的自动化控制及数据的实时采集和... 针对大坝边坡深部位移监测的自动化需求,开发了一种基于物联网的钻孔测斜机器人系统,并创新性地结合一维卷积神经网络模型(1D CNN)实现边坡变形模式的智能预测。通过自主研发的硬件主控板,实现了测斜仪的自动化控制及数据的实时采集和传输。基于采集的深部位移数据,1D CNN模型自动提取曲线特征并进行分类,识别出多种变形模式(如变形稳定、剪切滑动等),从而对边坡变形趋势进行智能化预测,有效支持地质灾害预警。试验表明,测斜机器人在A、B向的测量精度分别达±0.82、±1.04 mm/30 m,且1D CNN模型在曲线分类上表现优异。该系统通过高精度监测与自动化分析,显著提升了大坝边坡的监测效率和预警水平,具备广泛应用的潜力。 展开更多
关键词 测斜机器人 物联网 变形模式 卷积神经网络 大坝边坡
在线阅读 下载PDF
基于运动阵列微波成像与多尺度可变形卷积网络的引信目标识别方法
5
作者 韩燕文 闫晓鹏 +2 位作者 高晓峰 伊光华 代健 《兵工学报》 北大核心 2025年第3期214-224,共11页
针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)... 针对传统调频连续波(Frequency Modulated Continuous Wave,FMCW)引信探测维度低、方位分辨能力弱导致目标识别能力不足的问题,提出基于运动阵列微波成像与多尺度可变形卷积网络(Multi-Scale Deformable Convolutional Networks,MSDCN)的引信目标识别方法。在充分分析引信运动过程中回波相位变化规律的基础上建立FMCW运动阵列天线模型,通过运动合成扩充引信天线虚拟阵元数,大幅度提升引信方位向分辨率,实现目标距离-方位的二维高分辨成像。同时,深入分析弹目交会过程中由于目标位置、姿态、距离等状态变化形成的图像多尺度特性,构建MSDCN目标识别模型,提高引信对复杂动态交会场景下目标成像多尺度特性的自适应识别能力。实验结果表明,该方法能够显著提高引信方位分辨能力,在不同目标场景下均取得较好的成像和识别效果,对典型目标多尺度像识别准确率达到94%,-6 dB信噪比时目标识别准确率仍能达到88%。 展开更多
关键词 引信 调频连续波 运动阵列 距离-方位二维像 多尺度可变形卷积网络 目标识别
在线阅读 下载PDF
一种针对SAR图像的舰船目标检测算法
6
作者 孟凡龙 齐向阳 范怀涛 《电光与控制》 北大核心 2025年第1期74-79,共6页
由于环境复杂、舰船目标散焦和尺度的多样性,基于SAR图像的舰船目标检测仍然存在一些问题。提出了一种针对SAR图像的舰船目标检测算法。首先,基于可变形卷积构建舰船目标特征细化模块,提高对大长宽比姿态的舰船目标的特征提取能力;其次... 由于环境复杂、舰船目标散焦和尺度的多样性,基于SAR图像的舰船目标检测仍然存在一些问题。提出了一种针对SAR图像的舰船目标检测算法。首先,基于可变形卷积构建舰船目标特征细化模块,提高对大长宽比姿态的舰船目标的特征提取能力;其次,在主干网络末尾引入了舰船空间金字塔聚合结构,增强对舰船目标的全局特征提取能力;最后,设计了尺度扩展特征金字塔网络,增强舰船浅层和深层特征信息的交互,提高对多尺度舰船目标的检测能力。实验结果表明,所提算法在HRSID数据集上的mAP达到了93.72%,F1分数达到了89.70%,优于所有比较算法,具有良好的检测效果。 展开更多
关键词 SAR图像 舰船检测 可变形卷积 舰船空间金字塔聚合结构 尺度扩展特征金字塔网络
在线阅读 下载PDF
面向视障人群的室内视觉辅助算法的研究
7
作者 欧阳玉旋 张荣芬 +1 位作者 刘宇红 彭垚潘 《激光技术》 北大核心 2025年第2期166-174,共9页
为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效... 为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效层聚合网络(ELAN),大幅度降低模型参数量;构建了一个全新的高性能轻量化模块(即C2f-全局注意力模块),综合考虑全局和局部特征信息,更好地捕捉节点的上下文信息;然后引入快速空间金字塔池化和幽灵瓶颈(SPPF-GB)模块,对特征进行重组和压缩,以融合不同尺度的特征信息、增强特征的表达能力;最后在头部引入可变形卷积(DCN),增强感受野的表达能力,以捕获目标周围更细粒度的目标结构和背景信息。结果表明,改进后的模型参数量下降了20.33%,模型大小下降了18.70%,平均精度mAP@0.50和mAP@0.50~0.95分别提升了1.2%和3.3%。该网络模型在保证轻量化的同时,检测精度得到了大幅度的提升,更利于室内场景目标检测算法实际应用的部署。 展开更多
关键词 图像处理 轻量化 幽灵瓶颈模块 C2f-全局注意力模块 多尺度特征融合 可变形卷积 YOLOv7-tiny网络模型
在线阅读 下载PDF
基于CNN-LSTM的大坝变形组合预测模型研究 被引量:5
8
作者 王润英 林思雨 +1 位作者 方卫华 赵凯文 《水力发电》 CAS 2024年第1期37-41,52,共6页
为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间... 为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间序列的特征,再利用LSTM生成特征描述,该模型精度高、泛化能力强。以柏叶口水库混凝土面板堆石坝为例,经过CNN-LSTM模型计算,将模型变形预测值与原型监测资料进行对比,再与LSTM模型及CNN模型的预测结果进行对比。结果表明,CNN-LSTM模型预测值最接近监测资料实测结果。 展开更多
关键词 大坝变形 卷积神经网络 LSTM神经网络 变形预测 预测精度 柏叶口水库
在线阅读 下载PDF
融合CBAM注意力机制与可变形卷积的车道线检测 被引量:1
9
作者 胡丹丹 张忠婷 牛国臣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2150-2160,共11页
为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响... 为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。 展开更多
关键词 车道线检测 特征提取 注意力机制 可变形卷积网络 行锚分类
在线阅读 下载PDF
基于TCN和迁移学习的混凝土坝变形预测方法 被引量:1
10
作者 张健飞 叶亮 王磊 《人民黄河》 CAS 北大核心 2024年第4期142-147,共6页
混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的... 混凝土坝变形测点数据丢失或者新增测点测量时间太短都会导致这部分测点的数据量不足,使得变形预测精度受到影响。为了提高这些小数据量测点的变形预测精度,提出了将时域卷积网络(TCN)与迁移学习相结合的变形预测方法。以数据量充足的测点为源域,以缺少数据的测点为目标域,将在源域上训练好的TCN模型的结构和参数迁移到目标域模型中,固定其中的冻结层参数,利用目标域中的数据对目标域模型可调层参数进行调整。同时,采用动态时间规整选择与目标域数据序列相似度最高的监测数据作为最佳源域数据,提升迁移学习效果。工程实例分析表明:迁移学习后的目标域模型的均方根误差和平均绝对误差与利用足量数据训练的TCN模型的预测误差相比,差异仅分别为1.73%和8.09%,小数据量情况下TCN预测模型的精度得到了提高。 展开更多
关键词 时域卷积网络 迁移学习 动态时间规整 变形预测
在线阅读 下载PDF
以改进机器视觉算法构建纸张图像识别模型 被引量:1
11
作者 牟海荣 陆蕊 《造纸科学与技术》 2024年第2期60-62,81,共4页
为保障纸张生产加工质量,精准获取与识别纸张缺陷,以改进机器视觉算法构建了纸张图像识别模型。首先以由线阵CCD相机与双光源等构成的图像采集装备采集纸张缺陷图像,其次以改进机器视觉方法对纸张缺陷图像进行预处理分析,然后将预处理... 为保障纸张生产加工质量,精准获取与识别纸张缺陷,以改进机器视觉算法构建了纸张图像识别模型。首先以由线阵CCD相机与双光源等构成的图像采集装备采集纸张缺陷图像,其次以改进机器视觉方法对纸张缺陷图像进行预处理分析,然后将预处理后图案以可变形卷积神经网络输入进行训练,以此检测识别纸张所存在的缺陷类型。实验测试结果表明,基于改进机器视觉算法的纸张图像识别模型可高效且精准识别缺陷,准确率高达98.4%,拥有较高识别度,可广泛推广以投入实际运用。 展开更多
关键词 机器视觉 可变形卷积神经网络 纸张缺陷 图像识别 模型构建
在线阅读 下载PDF
基于多注意融合网络的输煤皮带异物识别方法
12
作者 李利 梁晶 +2 位作者 陈旭东 寇发荣 潘红光 《西安科技大学学报》 CAS 北大核心 2024年第5期976-984,共9页
为改善现有输煤皮带异物识别算法网络参数量大、识别精度不高的问题,及时避免大块煤和矸石、锚杆等带来的安全隐患,提出了一种基于多注意融合网络的输煤皮带异物识别方法,使用低照度图像处理算法对数据集进行预处理,采用融合局部注意力... 为改善现有输煤皮带异物识别算法网络参数量大、识别精度不高的问题,及时避免大块煤和矸石、锚杆等带来的安全隐患,提出了一种基于多注意融合网络的输煤皮带异物识别方法,使用低照度图像处理算法对数据集进行预处理,采用融合局部注意力残差块作为基本特征提取单元,在残差块中融入带有额外偏移量的可变形卷积以增加对不规则特征的描述,用注意力机制对全局特征图做期望最大化处理。结果表明:在Cifar 10数据集和矿用皮带传输异物识别数据集的识别准确率分别为93.7%和84.8%;与ShufflenetV2、MobileNetV2、ResNet 50、ResNet 110、Darknet 53算法相比,识别准确率分别提升了4.7%、3.9%、0.4%、0.5%、1.7%;与识别准确率相近的ResNet 50、ResNet 110算法相比,网络参数量和计算复杂度大大减小。识别方法能够快速识别输煤皮带异物,且具有较高的识别准确率,对保障煤矿运输系统的安全运行具有参考意义。 展开更多
关键词 异物识别 输煤皮带 Darknet网络 可变形卷积 注意力机制
在线阅读 下载PDF
基于改进YOLOv8的SAR图像飞机目标检测算法 被引量:7
13
作者 陈益方 张上 +1 位作者 冉秀康 王杰 《电讯技术》 北大核心 2024年第8期1206-1212,共7页
针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像飞机目标检测算法存在模型复杂度较高、检测效果差、泛化能力弱等问题,提出了一种基于改进YOLOv8的SAR图像飞机目标检测算法。首先,针对SAR图像飞机目标较小的特点,剔除大目标检测... 针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像飞机目标检测算法存在模型复杂度较高、检测效果差、泛化能力弱等问题,提出了一种基于改进YOLOv8的SAR图像飞机目标检测算法。首先,针对SAR图像飞机目标较小的特点,剔除大目标检测层,重构特征提取网络和特征融合网络,降低模型计算量。其次,在主干网络引入可变形卷积(Deformable Convolutional Network, DCN),增强特征提取能力;在颈部网络引入全局注意力机制(Global Attention Mechanism, GAM)提高检测精度。最后,采用WIOU(Wise-IoU)损失函数提高收敛速度和回归精度。在SADD数据集(SAR Aircraft Detection Dataset)上实验结果显示,改进算法较原YOLOv8算法模型体积压缩59.66%,参数量降低61.18%,计算量减少18.29%,最高精度提高至98.1%。与其他算法相比,所提算法在保证较高检测精度的情况下大幅降低了模型体积、参数量和计算量,实现了模型复杂度和检测精度的平衡。 展开更多
关键词 合成孔径雷达 飞机目标检测 网络重构 可变形卷积 GAM注意力机制
在线阅读 下载PDF
基于混沌云量子蝙蝠CNN-GRU大坝变形智能预报方法研究 被引量:4
14
作者 陈以浩 李明伟 +2 位作者 安小刚 王宇田 徐瑞喆 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期110-118,共9页
针对大坝变形影响因素复杂、精准预报难度较大问题,为了提高在大坝安全管理过程中大坝变形的预报精度,本文从大坝变形非线性动力系统时间序列的强非线性出发,引入深度卷积神经网络,对大坝变形及其空间影响特性进行挖掘,引入门控循环单元... 针对大坝变形影响因素复杂、精准预报难度较大问题,为了提高在大坝安全管理过程中大坝变形的预报精度,本文从大坝变形非线性动力系统时间序列的强非线性出发,引入深度卷积神经网络,对大坝变形及其空间影响特性进行挖掘,引入门控循环单元,对大坝变形的时域特性进行挖掘,构建应用于大坝变形预报的深度卷积神经网络-门控循环单元大坝变形组合深度学习网络;同时,为了获取深度卷积神经网络-门控循环单元组合网络的最佳超参,引入了混沌云量子蝙蝠算法,建立了基于混沌云量子蝙蝠算法算法的深度卷积神经网络-门控循环单元组合网络超参优选方法;最后,提出了深度卷积神经网络-门控循环单元-混沌云量子蝙蝠算法大坝变形组合深度学习智能预报方法。基于实测数据开展预报研究,对比结果表明:与对比模型相比,提出的深度卷积神经网络-门控循环单元-混沌云量子蝙蝠算法预报方法取得了更精确的预报结果,混沌云量子蝙蝠算法算法用于超参优选获得了更佳的超参组合。 展开更多
关键词 大坝变形预测 卷积神经网络 门控循环单元 蝙蝠算法 量子力学 混沌理论 非线性动力系统模拟与预测 深度学习
在线阅读 下载PDF
岩石变形局部化智能识别的DSCM-CNN方法
15
作者 张鹏 利铭 +3 位作者 姚海波 张军徽 马少军 高峰 《力学与实践》 2024年第1期109-119,共11页
岩石变形局部化的识别对于岩石破坏机理、岩土工程灾害预测预警有着重要的意义。本文将数字散斑相关方法(digital speckle correlation methods,DSCM)与卷积神经网络(convolutional neural networks,CNN)相结合,提出了一种用于岩石变形... 岩石变形局部化的识别对于岩石破坏机理、岩土工程灾害预测预警有着重要的意义。本文将数字散斑相关方法(digital speckle correlation methods,DSCM)与卷积神经网络(convolutional neural networks,CNN)相结合,提出了一种用于岩石变形局部化智能识别的DSCM-CNN模型。通过DSCM获取岩石试件在单轴压缩实验过程中的最大剪应变场云图,根据变形局部化带位置进行标注,完成数据集的构建;利用训练数据集对DSCM-CNN智能识别模型进行训练。通过红砂岩单轴压缩实验对该方法进行验证,结果表明:DSCM-CNN模型可以实现岩石变形局部化带位置的自动识别,子集准确率、精确度、召回率等指标分别达到94.19%,97.21%和96.41%,证明了岩石变形局部化智能识别的DSCM-CNN模型的可行性,为岩石变形局部化智能监测提供了一种新的思路。 展开更多
关键词 岩石 变形局部化 数字散斑相关方法 卷积神经网络 智能识别
在线阅读 下载PDF
基于变分模态分解的CNN-LSTM模型在基坑变形预测中的应用 被引量:3
16
作者 方庆 陈胜 +1 位作者 刘雪珠 邱伟 《力学与实践》 2024年第5期1015-1022,共8页
基坑变形会对工程造成许多不利影响,甚至可能引发土体塌陷和临近道路、建筑物开裂等灾害事故,所以基坑变形的预测是基坑工程中非常重要的一环。为了更准确地预测基坑变形,提出一种以监测数据的时间序列为输入的变分模态分解的卷积神经网... 基坑变形会对工程造成许多不利影响,甚至可能引发土体塌陷和临近道路、建筑物开裂等灾害事故,所以基坑变形的预测是基坑工程中非常重要的一环。为了更准确地预测基坑变形,提出一种以监测数据的时间序列为输入的变分模态分解的卷积神经网络-长短期记忆(variational mode decompositionconvolutional neural network-long short term memory,VMD-CNN-LSTM)预测模型。基于南京江北新区图书馆基坑工程的现场监测数据,利用VMD-CNN-LSTM模型对CX07监测点的地下连续墙深层水平位移进行预测,得到的变形预测值与长短期记忆神经网络(long short term memory,LSTM)和卷积神经网络-长短期记忆(convolutional neural network-long short term memory,CNN-LSTM)模型的预测结果对比分析。可知VMD-CNN-LSTM模型相比其他两种模型具有更高的准确性。再选取另外两个监测点的监测数据对模型的预测效果进一步验证,证明了VMD-CNN-LSTM模型的适用性和稳定性。 展开更多
关键词 基坑变形预测 变分模态分解 卷积神经网络 长短期记忆神经网络
在线阅读 下载PDF
基于CNN-Attention-LSTM的大坝变形预测模型
17
作者 施彦彤 郑东健 +1 位作者 赵汉 周新新 《水利水电技术(中英文)》 北大核心 2024年第9期121-132,共12页
【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记... 【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记忆网络(LSTM)的大坝监测模型。CNN从监测数据中提取特征,LSTM更好地从时间序列数据中学习,并在此CNN-LSTM模型的基础上,耦合深度学习算法Attention机制,突出特征对输入效果的影响,在不影响模型精度的前提下提高计算速度,进一步提高模型预测精度与稳定性。同时,结合工程实例进行了应用分析。【结果】结果显示,所建模型能够精确预测大坝变形,在各点位测试集上平均R2、MAE、RMSE、MSE和MAPE分别为0.989 mm、0.337 mm、0.469 mm、0.252 mm和13.918%。【结论】结果表明:所建模型具有较好的变形预测能力和适用性,相较于CNN、LSTM、CNN-LSTM、Attention-LSTM模型,该模型具有较好的MAE、RMSE、MSE、MAPE和R2等指标,并提高了计算效率,更适合大坝变形的预测。 展开更多
关键词 变形预测 卷积神经网络 长短时记忆网络 注意力机制 影响因素
在线阅读 下载PDF
基于CNN-LSTM-AM的大坝变形预测
18
作者 赖国梁 刘小生 《水电能源科学》 北大核心 2024年第10期158-161,157,共5页
为提高大坝变形预测模型的预测精度,以长短期记忆(LSTM)作为基础模型预测大坝变形,在LSTM网络层前加入卷积神经网络(CNN)卷积层,以卷积层中卷积核刻画数据的局部模式实现数据特征的深度挖掘,提取大坝变形多因素序列时空特征;LSTM网络层... 为提高大坝变形预测模型的预测精度,以长短期记忆(LSTM)作为基础模型预测大坝变形,在LSTM网络层前加入卷积神经网络(CNN)卷积层,以卷积层中卷积核刻画数据的局部模式实现数据特征的深度挖掘,提取大坝变形多因素序列时空特征;LSTM网络层后加入注意力机制层用于区分特征信息的重要程度并给予不同的关注度,进一步优化网络模型,构建了基于CNN-LSTM-AM的大坝预测模型。应用该大坝预测模型在工程实例中与LSTM、CNN-LSTM、LSTM-AM模型的预测结果和残差进行对比分析,CNN-LSTM-AM模型的预测结果和拟合度均更优;并以均方误差、均方根误差、平均绝对误差及决定系数R2作为精度评定指标对比各模型间预测性能,结果表明引入注意力机制能够提升模型预测性能,证实了基于CNN-LSTM-AM构建的大坝预测模型具有工程应用价值。 展开更多
关键词 卷积神经网络 长短期记忆网络 注意力机制 大坝变形预测 预测精度
在线阅读 下载PDF
基于粒子群优化卷积神经网络的深基坑变形预测方法 被引量:1
19
作者 赵颍 《建筑技术开发》 2024年第3期162-164,共3页
以华润阜阳中心项目五期总承包项目为研究对象,基于粒子群优化的卷积神经网络法对深基坑围护结构的水平位移和地表沉降进行预测,随着监测时间的增加,深基坑围护结构水平位移量和地表沉降量的预测值与实测值均具有一致的变化规律;与实测... 以华润阜阳中心项目五期总承包项目为研究对象,基于粒子群优化的卷积神经网络法对深基坑围护结构的水平位移和地表沉降进行预测,随着监测时间的增加,深基坑围护结构水平位移量和地表沉降量的预测值与实测值均具有一致的变化规律;与实测值相比,预测围护结构水平位移量的均方根误差为3.89%,平均百分比误差为5.92%,预测地表沉降量的均方根误差为4.53%,平均百分比误差为3.96%,均小于8%的误差限制要求,表明基于粒子群优化的卷积神经网络深基坑变形具有较高的预测精度。 展开更多
关键词 建筑工程 深基坑 变形预测 卷积神经网络 粒子群优化
在线阅读 下载PDF
独塔斜拉桥结构变形监测数据异常检测研究
20
作者 袁飞龙 乔维 《中国高新科技》 2024年第22期24-25,28,共3页
常规的异常数据检测方法存在一定的误报、检测精度较低的问题,为此,文章针对独塔斜拉桥结构变形监测数据,设计了一种新的异常检测方法。根据桥梁结构变形参量与时间的相关性,对传感器数据进行时间序列处理。将传感器采集的单通道数据经... 常规的异常数据检测方法存在一定的误报、检测精度较低的问题,为此,文章针对独塔斜拉桥结构变形监测数据,设计了一种新的异常检测方法。根据桥梁结构变形参量与时间的相关性,对传感器数据进行时间序列处理。将传感器采集的单通道数据经由格拉姆差分角场转换编码为二维数据图像,并提取、标注图像中数值与时间序列之间离群、漂移等异常形态特征。搭建以3层卷积层、softmax分类器为核心的卷积神经网络检测架构,通过卷积、池化和分类匹配实现了对异常数据的准确检测。实验发现,相比于常规方法,新方法的误报率明显下降,检测效果更佳。 展开更多
关键词 独塔斜拉桥 结构变形 监测数据 异常检测 卷积神经网络
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部