期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Attention mechanism based multi-scale feature extraction of bearing fault diagnosis 被引量:4
1
作者 LEI Xue LU Ningyun +2 位作者 CHEN Chuang HU Tianzhen JIANG Bin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1359-1367,共9页
Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearin... Effective bearing fault diagnosis is vital for the safe and reliable operation of rotating machinery.In practical applications,bearings often work at various rotational speeds as well as load conditions.Yet,the bearing fault diagnosis under multiple conditions is a new subject,which needs to be further explored.Therefore,a multi-scale deep belief network(DBN)method integrated with attention mechanism is proposed for the purpose of extracting the multi-scale core features from vibration signals,containing four primary steps:preprocessing of multi-scale data,feature extraction,feature fusion,and fault classification.The key novelties include multi-scale feature extraction using multi-scale DBN algorithm,and feature fusion using attention mecha-nism.The benchmark dataset from University of Ottawa is applied to validate the effectiveness as well as advantages of this method.Furthermore,the aforementioned method is compared with four classical fault diagnosis methods reported in the literature,and the comparison results show that our pro-posed method has higher diagnostic accuracy and better robustness. 展开更多
关键词 bearing fault diagnosis multiple conditions atten-tion mechanism multi-scale data deep belief network(DBN)
在线阅读 下载PDF
A novel multi-resolution network for the open-circuit faults diagnosis of automatic ramming drive system 被引量:1
2
作者 Liuxuan Wei Linfang Qian +3 位作者 Manyi Wang Minghao Tong Yilin Jiang Ming Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期225-237,共13页
The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit ... The open-circuit fault is one of the most common faults of the automatic ramming drive system(ARDS),and it can be categorized into the open-phase faults of Permanent Magnet Synchronous Motor(PMSM)and the open-circuit faults of Voltage Source Inverter(VSI). The stator current serves as a common indicator for detecting open-circuit faults. Due to the identical changes of the stator current between the open-phase faults in the PMSM and failures of double switches within the same leg of the VSI, this paper utilizes the zero-sequence voltage component as an additional diagnostic criterion to differentiate them.Considering the variable conditions and substantial noise of the ARDS, a novel Multi-resolution Network(Mr Net) is proposed, which can extract multi-resolution perceptual information and enhance robustness to the noise. Meanwhile, a feature weighted layer is introduced to allocate higher weights to characteristics situated near the feature frequency. Both simulation and experiment results validate that the proposed fault diagnosis method can diagnose 25 types of open-circuit faults and achieve more than98.28% diagnostic accuracy. In addition, the experiment results also demonstrate that Mr Net has the capability of diagnosing the fault types accurately under the interference of noise signals(Laplace noise and Gaussian noise). 展开更多
关键词 Fault diagnosis deep learning multi-scale convolution Open-circuit Convolutional neural network
在线阅读 下载PDF
基于即插即用框架和二维AMP的稀疏SAR学习成像方法
3
作者 李开明 张宏伟 +2 位作者 王天润 张强 匡旭斌 《北京理工大学学报》 北大核心 2025年第2期195-204,共10页
合成孔径雷达(synthetic aperture radar,SAR)稀疏成像问题主要通过压缩感知(compressed sensing,CS)理论来解决,通过构建正则化优化模型将先验信息引入图像恢复任务.然而,简单的正则化约束难以提供目标复杂的结构信息,尤其是非稀疏场景... 合成孔径雷达(synthetic aperture radar,SAR)稀疏成像问题主要通过压缩感知(compressed sensing,CS)理论来解决,通过构建正则化优化模型将先验信息引入图像恢复任务.然而,简单的正则化约束难以提供目标复杂的结构信息,尤其是非稀疏场景.提出了一种新颖的基于即插即用(plug-and-play,PnP)框架和深度展开网络(deep unfolding networks,DUN)的二维稀疏SAR学习成像方法.基于线性调频变标算法(chirp-scaling algorithm,CSA)推导出近似观测模型来降低计算成本;使用基于匹配滤波的二维近似消息传递(matched filter-based approximate message-passing,MFAMP)方法迭代求解该稀疏成像问题.为了克服现有稀疏成像方法中先验模型的局限性,在稀疏重建框架中引入PnP先验模型来代替传统的L1范数稀疏正则化器.将成像过程展开为一个DUN,称为基于PnP框架和MFAMP的SAR学习成像网络(PnP-MFAMP-Net).实验结果验证了所提成像方法的鲁棒性和优越性. 展开更多
关键词 合成孔径雷达 压缩感知 深度展开网络 稀疏成像 学习成像
在线阅读 下载PDF
稀疏性和自相似性先验引导的深度学习图像盲超分
4
作者 葛孙逸 罗小伟 +1 位作者 冯世阳 王斌 《红外与毫米波学报》 北大核心 2025年第3期431-444,共14页
现有的基于深度学习的图像盲超分算法仅利用神经网络端到端地学习低分辨率图像到高分辨率图像的映射,让网络隐式地学习图像的先验,导致算法仍产生模糊的超分结果。针对上述问题,提出一种稀疏性和自相似性先验引导的深度学习图像盲超分... 现有的基于深度学习的图像盲超分算法仅利用神经网络端到端地学习低分辨率图像到高分辨率图像的映射,让网络隐式地学习图像的先验,导致算法仍产生模糊的超分结果。针对上述问题,提出一种稀疏性和自相似性先验引导的深度学习图像盲超分算法。首先,针对不同的低分辨率图像输入,利用动态线性核估计模块,有效估计出相应模糊核;然后,利用基于快速迭代软阈值收缩算法(FISTA)的深度展开反卷积滤波模块,显式地对信号的稀疏性先验进行建模,实现对退化图像的反卷积恢复;最后,利用双通道多尺度大感受野恢复模块,借助图像自相似性先验进行超分恢复。实验结果表明,相较于现有方法,所提出算法在公开的Gaussian8数据集上达到了31.66的峰值信噪比(PSNR)与0.8725的结构相似度(SSIM),在公开的DIV2KRK数据集上实现了29.08的PSNR与0.8007的SSIM,其所恢复出的图像不仅具有最高的复原指标,还具有更佳的视觉效果。 展开更多
关键词 图像盲超分 深度学习 稀疏性先验 自相似性先验 深度展开网络
在线阅读 下载PDF
基于多尺度深度展开网络的布里渊增益谱降噪技术研究
5
作者 郑欢 徐诺 +2 位作者 舒涵 许科 彭银生 《传感技术学报》 北大核心 2025年第6期1030-1041,共12页
布里渊光时域分析(BOTDA)系统中的布里渊增益谱(BGS)可能存在噪声,造成布里渊频移等重要信息难以提取的问题,故需对BGS降噪。现有BGS降噪方法分为基于模型的方法(如BM3D)和基于学习方法(如Dn CNN)两大类,分别存在降噪速度慢和可解释性... 布里渊光时域分析(BOTDA)系统中的布里渊增益谱(BGS)可能存在噪声,造成布里渊频移等重要信息难以提取的问题,故需对BGS降噪。现有BGS降噪方法分为基于模型的方法(如BM3D)和基于学习方法(如Dn CNN)两大类,分别存在降噪速度慢和可解释性差的问题。对此提出基于多尺度深度展开网络(MSDUN)的BGS降噪方法,具有降噪效果好、降噪速度快、可解释性好的优点。MSDUN通过将输入图像经过一系列参数可学习的降噪模块实现降噪,卷积神经网络是隐含在每个降噪模块中的,因此MSDUN结构层次清楚,具有明晰的可解释性。由于在单个降噪模块中使用了卷积神经网络,因此降噪速度相比BM3D这类基于模型的方法更快。仿真和实验结果表明,MSDUN可以将三维BGS灰度图信噪比增强8.14 d B,降噪效果上优于BM3D的3.92 d B和Dn CNN的2.23 d B;降噪速度上,MSDUN只需4.8 s,比BM3D快了近30倍;相比Dn CNN,MSDUN算法层次结构更加清晰,可解释性好。 展开更多
关键词 光纤传感 布里渊增益谱 降噪 多尺度深度展开网络 布里渊光时域分析
在线阅读 下载PDF
基于伪监督注意力短期记忆与多尺度去伪影网络的图像分块压缩感知 被引量:3
6
作者 李俊辉 侯兴松 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第2期472-480,共9页
基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(M... 基于深度展开网络的分块压缩感知(BCS)方法,在迭代去块伪影时通常会同时去除部分信号和保留部分块伪影,不利于信号恢复。为了改善重建性能,在学习去噪的迭代阈值(LDIT)算法基础上,该文提出基于伪监督注意力短期记忆与多尺度去伪影网络(MSD-Net)的图像BCS迭代方法(PSASM-MD)。首先,在每步迭代中,利用残差网络并行地对每个图像子块单独去噪后再拼接。然后,对拼接后的图像采用含有伪监督注意力模块(PSAM)的MSD-Net进行特征提取,以更好地去除块伪影以提高重建性能。其中,PSAM被用于从含有块伪影的残差中抽取部分有用信号,并传递到下一步迭代实现短期记忆,以尽量避免去除有用信号。实验结果表明,该文方法相比现有先进的同类BCS方法在主观视觉感知和客观评价指标上均取得了更优的结果。 展开更多
关键词 分块压缩感知 短期记忆 图像去伪影 深度展开网络
在线阅读 下载PDF
基于深度展开网络的SFGPR压缩感知成像方法
7
作者 孙延鹏 尹鑫戊 屈乐乐 《雷达科学与技术》 北大核心 2024年第4期427-433,453,共8页
针对频率步进探地雷达(SFGPR)传统压缩感知成像方法中参数选取敏感、成像精度较低的问题,提出一种基于深度展开网络的SFGPR压缩感知成像方法。该方法首先将快速迭代收缩阈值算法的迭代过程映射到深度网络架构中,然后加入卷积神经网络模... 针对频率步进探地雷达(SFGPR)传统压缩感知成像方法中参数选取敏感、成像精度较低的问题,提出一种基于深度展开网络的SFGPR压缩感知成像方法。该方法首先将快速迭代收缩阈值算法的迭代过程映射到深度网络架构中,然后加入卷积神经网络模块作为成像区域的稀疏表示及其逆过程,需要手动调整的参数设置为可学习的网络参数,最后使用经过杂波抑制的降采样回波数据对网络进行训练和测试。仿真和实测数据处理结果表明该方法能够在无需人工调优参数的情况下,提高地下目标的成像精度。 展开更多
关键词 深度展开网络 频率步进探地雷达 快速迭代收缩阈值算法 压缩感知
在线阅读 下载PDF
基于深度展开的大规模MIMO系统CSI反馈算法 被引量:3
8
作者 廖勇 程港 李玉杰 《通信学报》 EI CSCD 北大核心 2022年第12期77-88,共12页
针对现阶段大规模MIMO系统中基于深度学习的信道状态信息(CSI)反馈算法待训练参数过多、可解释性不强的问题,提出了2种基于深度展开的CSI反馈算法。一种是基于可学习参数的近似消息传递(AMP)算法,该算法利用深度学习中的可学习参数将AM... 针对现阶段大规模MIMO系统中基于深度学习的信道状态信息(CSI)反馈算法待训练参数过多、可解释性不强的问题,提出了2种基于深度展开的CSI反馈算法。一种是基于可学习参数的近似消息传递(AMP)算法,该算法利用深度学习中的可学习参数将AMP算法中阈值函数的阈值和Onsager校正项的参数替换,增强了阈值函数在应对非严格稀疏数据时的非线性能力。另一种是基于卷积网络的AMP算法,该算法将阈值函数模块替换为卷积残差学习模块,利用该模块去除AMP算法中每轮迭代产生的高斯随机噪声。仿真分析表明,所提算法具有比AMP算法更好的CSI反馈表现,其中基于卷积网络的AMP算法具有比基于深度学习的代表性方法更优异的CSI重构性能。 展开更多
关键词 CSI反馈 深度学习 深度展开 近似消息传递 可学习参数 卷积网络
在线阅读 下载PDF
基于深度展开和双流网络的高光谱图像融合
9
作者 刘丛 姚佳浩 《数据采集与处理》 CSCD 北大核心 2023年第6期1406-1421,共16页
针对基于深度学习的高光谱图像融合算法通常堆积多个卷积以学习映射关系、没有充分利用问题的特性以及缺乏可解释性等问题,提出一种结合深度展开与双流网络的深度网络。首先使用卷积稀疏编码建立融合模型,该模型将低分辨率高光谱图像(Lo... 针对基于深度学习的高光谱图像融合算法通常堆积多个卷积以学习映射关系、没有充分利用问题的特性以及缺乏可解释性等问题,提出一种结合深度展开与双流网络的深度网络。首先使用卷积稀疏编码建立融合模型,该模型将低分辨率高光谱图像(Low-resolution hyperspectral images,LR-HSI)和高分辨率多光谱图像(high-resolution multispectral images,HR-MSI)映射到低维子空间中。在融合模型设计中,考虑了LR-HSI和HR-MSI的共有信息以及LR-HSI的独有信息,并将HR-MSI作为辅助信息加入模型中。其次将该融合模型展开为可学习的可解释深度网络。最后,使用双流网络获取更精确的高分辨率高光谱图像(High-resolution hyperspectral images,HR-HSI)。实验表明,该网络在高光谱图像融合中可以获得出色的效果。 展开更多
关键词 高光谱图像融合 卷积稀疏编码 深度展开网络 双流网络 深度学习
在线阅读 下载PDF
一种基于深度学习的异常数据清洗算法 被引量:30
10
作者 匡俊搴 赵畅 +2 位作者 杨柳 王海峰 钱骅 《电子与信息学报》 EI CSCD 北大核心 2022年第2期507-513,共7页
在物联网(IoT)中采用合适的异常数据清洗算法能极大地提升数据质量。许多研究人员采用统计学方法或分类聚类等方法对时-空相关数据进行清洗。但这些方法需要额外的先验知识,会给汇聚节点带来额外的计算开销。该文根据低秩-稀疏矩阵分解... 在物联网(IoT)中采用合适的异常数据清洗算法能极大地提升数据质量。许多研究人员采用统计学方法或分类聚类等方法对时-空相关数据进行清洗。但这些方法需要额外的先验知识,会给汇聚节点带来额外的计算开销。该文根据低秩-稀疏矩阵分解模型,提出一种基于深度神经网络的快速异常数据清洗算法,来解决物联网中时-空相关数据的清洗问题。结合感知数据的时-空相关性和异常值的稀疏性,将异常数据清洗问题转换为优化问题,并采用迭代阈值收缩算法(ISTA)求解该优化问题,再将ISTA算法展开成一个固定长度的深度神经网络。实际数据集的实验结果表明,该方法能够自动更新阈值,比传统的ISTA算法收敛速度更快,精度更高。 展开更多
关键词 物联网 异常数据清洗 迭代阈值收缩算法 展开 深度神经网络
在线阅读 下载PDF
基于深度多尺度卷积稀疏编码的图像去噪算法 被引量:2
11
作者 尹海涛 王天由 《计算机科学》 CSCD 北大核心 2023年第4期133-140,共8页
针对图像去噪深度网络缺乏可解释性的问题,利用深度展开思想,提出了一种基于多尺度卷积稀疏编码的深度去噪网络(MSCSC-Net)。首先利用多尺度卷积字典,构建了多尺度卷积稀疏编码模型,能有效地刻画图像中的多尺度结构特征,然后将多尺度卷... 针对图像去噪深度网络缺乏可解释性的问题,利用深度展开思想,提出了一种基于多尺度卷积稀疏编码的深度去噪网络(MSCSC-Net)。首先利用多尺度卷积字典,构建了多尺度卷积稀疏编码模型,能有效地刻画图像中的多尺度结构特征,然后将多尺度卷积稀疏编码模型的传统迭代优化解展开为深度神经网络架构,即MSCSC-Net,其中网络的每层对应优化解的每次迭代。因此,提出的深度网络中参数可以通过优化模型来准确定义,提高了网络的可解释性。此外,为了更加有效地保留原始图像中的结构信息,MSCSC-Net采用了一种改进的残差学习思想,将输入噪声图像与上一层的中间去噪结果进行加权,并作为下一层的输入图像,以进一步提高网络的去噪效果。在公开数据集上的实验结果表明,与现有典型的基于深度学习去噪算法相比,MSCSC-Net具有一定的竞争力。特别地,在CBSD68数据集上,噪声等级为75时,MSCSC-Net的平均PSNR指标和SSIM指标比FFDNet分别提高了0.77%和2.2%。 展开更多
关键词 图像去噪 多尺度卷积稀疏编码 残差学习 深度神经网络 深度展开
在线阅读 下载PDF
基于深度展开ISTA网络的混合源定位方法 被引量:2
12
作者 苏晓龙 户盼鹤 +3 位作者 刘天鹏 彭勃 程耘 刘振 《信号处理》 CSCD 北大核心 2022年第10期2082-2091,共10页
针对嵌套阵列下近场和远场混合源定位问题,本文通过构建和训练深度展开迭代收缩阈值算法(Iterative Shrinkage Thresholding Algorithm,ISTA)网络实现混合源的波达方向(direction of arrival,DOA)和距离参数估计。首先考虑到近场源协方... 针对嵌套阵列下近场和远场混合源定位问题,本文通过构建和训练深度展开迭代收缩阈值算法(Iterative Shrinkage Thresholding Algorithm,ISTA)网络实现混合源的波达方向(direction of arrival,DOA)和距离参数估计。首先考虑到近场源协方差矩阵具有Hermitian矩阵形式,远场源协方差矩阵具有Hermitian和Toeplitz矩阵形式,通过将混合源协方差矩阵进行差分可以得到近场源差分向量,其中近场源差分向量转换到实数域,可以显著降低深度展开ISTA网络的计算复杂度。接着将不同参数下的近场源差分向量和近场源真实空间谱进行配对作为训练样本,对近场源深度展开ISTA网络进行训练,其中深度展开ISTA网络的隐藏层对应模型驱动ISTA方法的迭代步骤。然后利用估计出的近场源DOA和距离参数,通过子空间差分方法得到远场源协方差向量。最后将不同参数下的远场源协方差向量和远场源真实空间谱进行配对作为训练样本,对远场源深度展开ISTA网络进行训练,其中远场源协方差向量同样转换到实数域。在深度展开ISTA网络的训练过程中,损失函数只与重构误差和网络输出的稀疏性有关,不需要混合源的标签,可以认为是无监督学习。仿真实验表明所提出的深度展开ISTA网络能够实现混合源识别和定位。此外所提出的深度展开ISTA网络具有可解释参数,对近场和远场混合源的离网格参数估计具有泛化能力。相较于模型驱动ISTA方法,经过训练的深度展开ISTA网络的收敛速度更快,对近场和远场混合源定位的精度更高。 展开更多
关键词 混合源定位 嵌套阵列 深度展开网络 迭代收缩阈值算法 空间谱
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部