The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f...The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.展开更多
2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(...2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.展开更多
The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monit...The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.展开更多
A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]py...A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.展开更多
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof...Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications.展开更多
To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experimen...To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.展开更多
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ...The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.展开更多
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea...In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.展开更多
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba...In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.展开更多
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ...Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.展开更多
Gold has been present throughout the history of mankind and used to make jewelry and coins, and recently, acquired several industrial uses. The price of gold in international market had a significant increasing, surpa...Gold has been present throughout the history of mankind and used to make jewelry and coins, and recently, acquired several industrial uses. The price of gold in international market had a significant increasing, surpassing 100% in the last five years. Thereby, deposits with low levels of gold content, gold with complex associations or in a very fine particle size became exploitable again, allowing new projects and expansion of existing ones. However, for maximum process efficiency is indispensable a deep knowledge of the characteristics of these minerals and their behavior in face of beneficiation processes. Consequently, an accurate routine for mineralogical and technological characterization is essential.展开更多
In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions.The lignin structures were c...In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions.The lignin structures were characterized by Fourier transform infrared spectroscopy(FT-IR) and 1D and 2D Nuclear Magnetic Resonance(NMR).FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given.The results of 1H and 13C NMR demonstrated that the lignin fraction L2,isolated with 70% ethanol containing 1% NaOH,was mainly composed of β-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit.Based on the 2D HSQC NMR spectrum,the ethanol organosolv lignin fraction L1,extracted with 70% ethanol,presents a predominance of β-O-4′ aryl ether linkages(61% of total side chains),and a low abundance of condensed carbon-carbon linked structures(such as ββ′,β-1′,and β-5′) and a lower S/G ratio.Furthermore,a small percentage(ca.9%) of the linkage side chain was found to be acylated at the γ-carbon.展开更多
The effects of adding cosolvents of diglyme and 15-crown-5 to the reaction mixture of Wurtz-type coupling of dichlorosilanes on the yield and relative molecular mass dispersity of polymethylphenethylsilane(PMPES) were...The effects of adding cosolvents of diglyme and 15-crown-5 to the reaction mixture of Wurtz-type coupling of dichlorosilanes on the yield and relative molecular mass dispersity of polymethylphenethylsilane(PMPES) were discussed. The results show that addition of 10%(volume ratio of diglyme to toluene) diglyme as a cosolvent to the reaction mixture leads to the yield increase of PMPES with a monomodal distribution of relative molecular masses. Adding 10%diglyme to the reaction mixtures, the yields of polymethylcyclohexylsilane(PMCS) and copolymers (polymethylphenethylsilane-co-methylcyclohexylsilane), (the molar ratios of methylphenethyldichlorosilane to methylcyclohexyldichlorosilane were 2.0, 1.0 and 0.5, and the copolymers were abbreviated by Copolymers I, II, III, respectively) are 47%, 52%, 54%, 53%, respectively. Their relative molecular masses ([`(M)]w )(\bar M_w ) almost reach 105. These polysilanes were characterized by 1H-NMR, IR and UV absorption spectrum.展开更多
Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scan...Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scanning electron microscopy, thermogravimetry and differential scanning calorimetry, etc. The major compositions of pickling sludge are CaF2, CaSO4, Me(OH), (M: Fe, Cr, Ni), and the content of CaF2 is high in the sludge. The melting point of pickling sludge is about 1350℃ and the viscosity is about 0.14 Pa.s at 1450 ℃, which are comparatively lower than those of normal refining slag. After heat treatment, the contents of sulfur and fluorine in the pickling sludge were reduced, confirming the thermal decomposition of sulfate in the sludge. Fluorine in the sludge is reduced by the gaseous SiF4 and A1F3 generated through the reactions of CaF2 with SiO2 and Al2O3. The preliminary results from the reduction test indicate that the sulfur content in the steel is not affected by the presence of sulfur in the sludge. The recovery of nickel is about 40%, and the chromium content changes marginally due to the protective atmosphere under the reduction condition of chromic oxide. The pickling sludge is a potential auxiliary material for the production of stainless steel.展开更多
The unsaturated quaternary ammonium salt diethyldiallylammonium chloride(DEDAAC) was synthesized in a two-step synthetic method. The influences of the adding method of raw materials and temperature on the yields of di...The unsaturated quaternary ammonium salt diethyldiallylammonium chloride(DEDAAC) was synthesized in a two-step synthetic method. The influences of the adding method of raw materials and temperature on the yields of diethylallylamine (DEAA), and drying and temperature on the synthesis of DEDAAC were investigated. The content of in-process product DEAA was determined by non-aqueous titration. The structure of product DEDAAC was identified with IR, 1 H NMR and elemental analysis. The results show that adding allyl chloride and sodium hydroxide alternately can increase the yield of DEAA and decrease by-products. In further synthesizing of DEDAAC from DEAA, the step of drying DEAA is very necessary. When DEAA is dried by solid sodium hydroxide, good columnar crystals with a high purity(mp 199.5-201.0 ℃) are obtained; when DEAA is undried or the content of water in DEAA is above 20%, only platelets with bad quality are obtained even without crystals. The suitable synthesis conditions for DEAA and DEDAAC are 35 ℃, 6 h and 40 ℃, 36 h, respectively, and their yields are 69.7% and 67.3%, respectively.展开更多
The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansi...The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansion was deduced on the basis of the experimental results. The sodium expansion parameter (a) and penetration rate factor (Q), were introduced into the model The model was validated with the experimental sodium expansion curves self-measured and reported. The results show that the variation tendency of the sodium expansion parameter (a) and penetration rate factor (Q) is consistent with that of the experimental curves. The model is capable of not only conveniently judging the cathode quality, but also favorably establishing a unified standard of the resistance to sodium penetration of cathode.展开更多
Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis o...Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.展开更多
In this study,AleCuO nanocomposites were fabricated by sol-gel method.As a contrast,the thermite was prepared by physical mixing at the equivalence ratio of 0.5,1,2,respectively.The intermediates and samples as prepar...In this study,AleCuO nanocomposites were fabricated by sol-gel method.As a contrast,the thermite was prepared by physical mixing at the equivalence ratio of 0.5,1,2,respectively.The intermediates and samples as prepared were characterized by SEM and XRD.The exothermic properties of the two samples prepared at different equivalence ratios were tested and the reaction products were characterized by XRD.The SEM results show that the sample prepared by the sol-gel method demonstrates a micron-sized agglomerated sphere formed by a mutual wrapping of Al NPs and CuO NPs,and the particles are evenly distributed in the agglomerate.In addition,when the content of Al powder is seriously insufficient,the heat release of the sample prepared by physical mixing is 1.6 times that of by sol-gel method.With the increase of Al powder content,the exothermic properties of Al/CuO NPs prepared by sol-gel method began to increase significantly compared with physical mixing and the difference is 1.5 times when the equivalence ratio increases to 2.It can be concluded that the reason for this result may be attributed to the different mass transfer modes of components due to the different morphologies of samples.展开更多
The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties.A mathematical procedure called spherical harmonic function analysis was here de...The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties.A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner.This method has strong mathematical properties with respect to orthogonality and rotating invariance.It was used here to characterize and reconstruct particle micromorphology in three-dimensional space.The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area.The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases,and the error can be brought below 5%when the order number reaches 10.This level of precision is sharp enough to distinguish the characteristics of real particles.Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples,and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D.Results show that the higher the spherical harmonic order of reconstructed particles,the lower the initial compression modulus and the larger the strain at peak intensity.However,peak strength shows only a random relationship to spherical harmonic order.Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.展开更多
基金Supported by the Henan Province Key Research and Development Project(231111211300)the Central Government of Henan Province Guides Local Science and Technology Development Funds(Z20231811005)+2 种基金Henan Province Key Research and Development Project(231111110100)Henan Provincial Outstanding Foreign Scientist Studio(GZS2024006)Henan Provincial Joint Fund for Scientific and Technological Research and Development Plan(Application and Overcoming Technical Barriers)(242103810028)。
文摘The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception.
文摘2-substituted-1-amino-o-carboranes 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10)(R=CH_(3),1a;R=Ph,1b)were synthesized and the reactions of these compounds with the yttrium dialkyl complex[Y(L)(CH_(2)SiMe3)_(2)](L=[2-(2,5-Me_(2)C_(4)H_(2)N)C_(6)H4NC(Ph)=NDipp]-,Dipp=2,6-iPr_(2)C_(6)H_(3))were investigated.The 1H NMR spectroscopy indicate that the reaction of ytrrium dialkyl complex with one equivalent of 2-R-1-NH_(2)-o-C_(2)B_(10)H_(10) produce the mixture of ytrrium alkyl-amido complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))(CH_(2)SiMe3)](R=CH_(3),2a;R=Ph,2b)and bis(amido)complex[Y(L)(2-R-1-NH-o-C_(2)B_(10)H_(10))_(2)](R=CH_(3),3a;R=Ph,3b).The yttrium bridging imido complex[Y(L)(2-CH_(3)-1-N-o-C_(2)B_(10)H_(10))]_(2)(4a)was obtained by heating the mixture at 55℃for 12 h.Complex 3a was isolated and characterized by treating the yttrium dialkyl complex with two equivalents of 1a.The structures of complexes 3a and 4a were verified by single-crystal Xray diffraction.CCDC:2424136,3a;2424137,4a.
基金湖南省教育厅基金优秀青年项目(No.22B0482)湖南科技大学博士启动基金(No.E51992 and E51993)资助。
文摘The xylitol dehydrogenase(XDH)is a crucial enzyme involved in the xylose utilization in pentose⁃catabolizing yeasts and fungi.In addition to producing xylulose,XDH can also be employed to develop a biosensor for monitoring xylitol concentration.In this study,the gene encoding the thermophilic fungus Talaromyces emersonii XDH(TeXDH)was heterologously expressed in Escherichia coli BL21(DE3)at 16℃in the soluble form.Recombinant TeXDH with high purity was purified by using a Ni⁃NTA affinity column.Size⁃exclusion chromatography and SDS⁃PAGE analysis demonstrated that the puri⁃fied recombinant TeXDH exists as a native trimer with a molecular mass of approximately 116 kD,and is composed of three identical subunits,each with a molecular weight of around 39 kD.The TeXDH strictly preferred NAD^(+)as a coenzyme to NADP^(+).The optimal temperature and pH of the TeXDH were 40℃and 10.0,respectively.After EDTA treatment,the enzyme activity of TeXDH decreased to 43.26%of the initial enzyme activity,while the divalent metal ions Mg^(2+)or Ca^(2+)could recover the enzyme activity of TeXDH,reaching 103.32%and 110.69%of the initial enzyme activity,respectively,making them the optimal divalent metal ion cofactors for TeXDH enzyme.However,the divalent metal ions of Mn^(2+),Ni^(2+),Cu^(2+),Zn^(2+),Co^(2+),and Cd^(2+)significantly inhibited the activity of TeXDH.ICP⁃MS and molecular doc⁃king studies revealed that 1 mol/L of TeXDH bound 2 mol/L Zn^(2+)ions and 1 mol/L Mg^(2+)ion.Further⁃more,TeXDH exhibited a high specificity for xylitol,laying the foundation for the development of future xylitol biosensors.
文摘A trinuclear copper complex [Cu_(3)(L2)_(2)(SO_(4))_(2)(H_(2)O)_(7)]·8H_(2)O(1)(HL2=1-hydroxy-3-(pyrazin-2-yl)-N-(pyrazin-2-ylmethyl)imidazo[1,5-a]pyrazine-8-carboxamide) with a multi-substituted imidazo[1,5-a]pyrazine scaffold was serendipitously prepared from the reaction of the pro-ligand of H_(2)L1(N,N'-bis(pyrazin-2-ylmethyl)pyrazine-2,3-dicarboxamide) with CuSO_(4)·5H_(2O) in aqueous solution at room temperature.Complex 1 was characterized by IR,single-crystal X-ray analysis,and magnetic susceptibility measurements.Single-crystal X-ray analysis reveals that the complex consists of three Cu(Ⅱ) ions,two in situ transformed L2~-ligands,two coordinated sulfates,seven coordinated water molecules,and eight uncoordinated water molecules.Magnetic susceptibility measurement indicates that there are obvious ferromagnetic coupling interactions between the adjacent Cu(Ⅱ) ions in 1.CCDC:1852713.
基金Project(2019YFC1803601)supported by the National Key Research and Development Program of ChinaProject(52274182)supported by the National Natural Science Foundation of China+1 种基金Project(2021zzts0274)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(CX20210295)supported by the Postgraduate Scientific Research Innovation Project of Hunan Province,China。
文摘Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications.
基金Projects(U23B2093,52274245)supported by the National Natural Science Foundation of ChinaProject(KFJJ22-15M)supported by the Opening Project of State Key Laboratory of Explosion Science and Technology,China。
文摘To investigate the complex macro-mechanical properties of coal from a micro-mechanical perspective,we have conducted a series of micro-mechanical experiments on coal using a nano-indentation instrument.These experiments were conducted under both dynamic and static loading conditions,allowing us to gather the micro-mechanical parameters of coal for further analysis of its micro-mechanical heterogeneity using the box counting statistical method and the Weibull model.The research findings indicate that the load–displacement curves of the coal mass under the two different loading modes exhibit noticeable discreteness.This can be attributed to the stress concentration phenomenon caused by variations in the mechanical properties of the micro-units during the loading process of the coal mass.Consequently,there are significant fluctuations in the micro-mechanical parameters of the coal mass.Moreover,the mechanical heterogeneity of the coal at the nanoscale was confirmed based on the calculation results of the standard deviation coefficient and Weibull modulus of the coal body’s micromechanical parameters.These results reveal the influence of microstructural defects and minerals on the uniformity of the stress field distribution within the loaded coal body,as well as on the ductility characteristics of the micro-defect structure.Furthermore,there is a pronounced heterogeneity in the micromechanical parameters.Furthermore,we have established a relationship between the macro and micro elastic modulus of coal by applying the Mori-Tanaka homogenization method.This relationship holds great significance for revealing the micro-mechanical failure mechanism of coal.
基金the National Key R&D Program of China(2018AAA0103103).
文摘The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation.
文摘In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm.
基金supported by the National Natural Science Foundation of China (62271255,61871218)the Fundamental Research Funds for the Central University (3082019NC2019002)+1 种基金the Aeronautical Science Foundation (ASFC-201920007002)the Program of Remote Sensing Intelligent Monitoring and Emergency Services for Regional Security Elements。
文摘In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance.
文摘Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation.
文摘Gold has been present throughout the history of mankind and used to make jewelry and coins, and recently, acquired several industrial uses. The price of gold in international market had a significant increasing, surpassing 100% in the last five years. Thereby, deposits with low levels of gold content, gold with complex associations or in a very fine particle size became exploitable again, allowing new projects and expansion of existing ones. However, for maximum process efficiency is indispensable a deep knowledge of the characteristics of these minerals and their behavior in face of beneficiation processes. Consequently, an accurate routine for mineralogical and technological characterization is essential.
基金Major State Basic Research Projects of China(973-2010CB732204)Specific Programs in Graduate Science and Technology Innovation of Beijing Forestry University(BLYJ201110)
文摘In order to efficiently explore and use woody biomass,six lignin fractions were isolated from dewaxed Caragana sinica via successive extraction with organic solvents and alkaline solutions.The lignin structures were characterized by Fourier transform infrared spectroscopy(FT-IR) and 1D and 2D Nuclear Magnetic Resonance(NMR).FT-IR spectra revealed that the "core" of the lignin structure did not significantly change during the treatment under the conditions given.The results of 1H and 13C NMR demonstrated that the lignin fraction L2,isolated with 70% ethanol containing 1% NaOH,was mainly composed of β-O-4 ether bonds together with G and S units and trace p-hydroxyphenyl unit.Based on the 2D HSQC NMR spectrum,the ethanol organosolv lignin fraction L1,extracted with 70% ethanol,presents a predominance of β-O-4′ aryl ether linkages(61% of total side chains),and a low abundance of condensed carbon-carbon linked structures(such as ββ′,β-1′,and β-5′) and a lower S/G ratio.Furthermore,a small percentage(ca.9%) of the linkage side chain was found to be acylated at the γ-carbon.
基金The National Natural Science Foundation of China !(No .2 8970 817)
文摘The effects of adding cosolvents of diglyme and 15-crown-5 to the reaction mixture of Wurtz-type coupling of dichlorosilanes on the yield and relative molecular mass dispersity of polymethylphenethylsilane(PMPES) were discussed. The results show that addition of 10%(volume ratio of diglyme to toluene) diglyme as a cosolvent to the reaction mixture leads to the yield increase of PMPES with a monomodal distribution of relative molecular masses. Adding 10%diglyme to the reaction mixtures, the yields of polymethylcyclohexylsilane(PMCS) and copolymers (polymethylphenethylsilane-co-methylcyclohexylsilane), (the molar ratios of methylphenethyldichlorosilane to methylcyclohexyldichlorosilane were 2.0, 1.0 and 0.5, and the copolymers were abbreviated by Copolymers I, II, III, respectively) are 47%, 52%, 54%, 53%, respectively. Their relative molecular masses ([`(M)]w )(\bar M_w ) almost reach 105. These polysilanes were characterized by 1H-NMR, IR and UV absorption spectrum.
基金Project(2010JM7010)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaProject supported by the Technology Foundation for Selected Overseas Chinese Scholars,Department of Human Resources and Social Security of Shaanxi Province,China
文摘Pickling sludge generated during the neutralization of pickling wastewater with calcium hydroxide in stainless steel pickling process was characterized using X-ray fluorescence spectrometry, X-ray diffractometry, scanning electron microscopy, thermogravimetry and differential scanning calorimetry, etc. The major compositions of pickling sludge are CaF2, CaSO4, Me(OH), (M: Fe, Cr, Ni), and the content of CaF2 is high in the sludge. The melting point of pickling sludge is about 1350℃ and the viscosity is about 0.14 Pa.s at 1450 ℃, which are comparatively lower than those of normal refining slag. After heat treatment, the contents of sulfur and fluorine in the pickling sludge were reduced, confirming the thermal decomposition of sulfate in the sludge. Fluorine in the sludge is reduced by the gaseous SiF4 and A1F3 generated through the reactions of CaF2 with SiO2 and Al2O3. The preliminary results from the reduction test indicate that the sulfur content in the steel is not affected by the presence of sulfur in the sludge. The recovery of nickel is about 40%, and the chromium content changes marginally due to the protective atmosphere under the reduction condition of chromic oxide. The pickling sludge is a potential auxiliary material for the production of stainless steel.
文摘The unsaturated quaternary ammonium salt diethyldiallylammonium chloride(DEDAAC) was synthesized in a two-step synthetic method. The influences of the adding method of raw materials and temperature on the yields of diethylallylamine (DEAA), and drying and temperature on the synthesis of DEDAAC were investigated. The content of in-process product DEAA was determined by non-aqueous titration. The structure of product DEDAAC was identified with IR, 1 H NMR and elemental analysis. The results show that adding allyl chloride and sodium hydroxide alternately can increase the yield of DEAA and decrease by-products. In further synthesizing of DEDAAC from DEAA, the step of drying DEAA is very necessary. When DEAA is dried by solid sodium hydroxide, good columnar crystals with a high purity(mp 199.5-201.0 ℃) are obtained; when DEAA is undried or the content of water in DEAA is above 20%, only platelets with bad quality are obtained even without crystals. The suitable synthesis conditions for DEAA and DEDAAC are 35 ℃, 6 h and 40 ℃, 36 h, respectively, and their yields are 69.7% and 67.3%, respectively.
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030502) supported by the National High-Tech Research and Development Program of ChinaProject(GUIKEJI0639032) supported by the Science Fund Project of Guangxi Province, China
文摘The sodium expansion curves of semi-graphitic cathode measured with the improved Rapoport-Samoilenko apparatus. The and TiB2/C composite cathode with different TiB2 contents were mathematic model of the sodium expansion was deduced on the basis of the experimental results. The sodium expansion parameter (a) and penetration rate factor (Q), were introduced into the model The model was validated with the experimental sodium expansion curves self-measured and reported. The results show that the variation tendency of the sodium expansion parameter (a) and penetration rate factor (Q) is consistent with that of the experimental curves. The model is capable of not only conveniently judging the cathode quality, but also favorably establishing a unified standard of the resistance to sodium penetration of cathode.
基金Project(2019M653082)supported by the China Postdoctoral Science FoundationProject(BGRIMM-KJSKL-2020-02)supported by the Found of State Key Laboratory of Mineral Processing,China。
文摘Process mineralogy of low-grade laterite nickel ore in Indonesia was systematically characterized and the beneficiation process of mineral components such as limonite,serpentine and chromite was studied on the basis of process mineralogy.The results show that the low-grade laterite nickel ore is a typical weathering sedimentary metamorphic oxidized ore,with the main valuable elements of Ni,Co and Cr and the main mineral components of limonite,serpentine,chromite,etc.There is no independent carrier mineral of Ni and Co in the raw ore,and the occurrence states of Ni and Co are relatively dispersed.For the limonite in laterite nickel mine,the nickel bearing magnetite concentrate with nickel grade of 1.98%and recovery rate of 88.42%can be obtained by reduction roasting magnetic separation process.For the serpentine in laterite nickel mine,the cobalt bearing concentrate with Co grade of 0.17%and recovery rate of 23.17%can be obtained by positive and reverse flotation process.A chromium concentrate containing 35.17%Cr_(2)O_(3) and a recovery of 33.42%can be obtained by using the combined process of coarse and fine classification and gravity and magnetic.
文摘In this study,AleCuO nanocomposites were fabricated by sol-gel method.As a contrast,the thermite was prepared by physical mixing at the equivalence ratio of 0.5,1,2,respectively.The intermediates and samples as prepared were characterized by SEM and XRD.The exothermic properties of the two samples prepared at different equivalence ratios were tested and the reaction products were characterized by XRD.The SEM results show that the sample prepared by the sol-gel method demonstrates a micron-sized agglomerated sphere formed by a mutual wrapping of Al NPs and CuO NPs,and the particles are evenly distributed in the agglomerate.In addition,when the content of Al powder is seriously insufficient,the heat release of the sample prepared by physical mixing is 1.6 times that of by sol-gel method.With the increase of Al powder content,the exothermic properties of Al/CuO NPs prepared by sol-gel method began to increase significantly compared with physical mixing and the difference is 1.5 times when the equivalence ratio increases to 2.It can be concluded that the reason for this result may be attributed to the different mass transfer modes of components due to the different morphologies of samples.
基金Project(2015CB057903)supported by the National Basic Research Program of ChinaProjects(51679071,51309089)supported by the National Natural Science Foundation of China+2 种基金Project(BK20130846)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2013BAB06B00)supported by the National Key Technology R&D Program,ChinaProject(2015B06014)supported by the Fundamental Research Funds for the Central Universities,China
文摘The microscopic characteristics of skeletal particles in rock and soil media have important effects on macroscopic mechanical properties.A mathematical procedure called spherical harmonic function analysis was here developed to characterize micromorphology of particles and determine the meso effects in a discrete manner.This method has strong mathematical properties with respect to orthogonality and rotating invariance.It was used here to characterize and reconstruct particle micromorphology in three-dimensional space.The applicability and accuracy of the method were assessed through comparison of basic geometric properties such as volume and surface area.The results show that the micromorphological characteristics of reproduced particles become more and more readily distinguishable as the reproduced order number of spherical harmonic function increases,and the error can be brought below 5%when the order number reaches 10.This level of precision is sharp enough to distinguish the characteristics of real particles.Reconstructed particles of the same size but different reconstructed orders were used to form cylindrical samples,and the stress-strain curves of these samples filled with different-order particles which have their mutual morphological features were compared using PFC3D.Results show that the higher the spherical harmonic order of reconstructed particles,the lower the initial compression modulus and the larger the strain at peak intensity.However,peak strength shows only a random relationship to spherical harmonic order.Microstructure reconstruction was here shown to be an efficient means of numerically simulating of multi-scale rock and soil media and studying the mechanical properties of soil samples.