期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
基于Shapelets的多元时间序列分类方法
1
作者 王威娜 李明莉 《科学技术与工程》 北大核心 2025年第1期252-261,共10页
多元时间序列分类是众多领域的关键问题,但是当前多元时序分类研究面临着原始数据高维、精度不足、可解释性缺乏等问题,这使得模型性能提升受限,准确率难以满足实际需求。针对上述问题,提出基于Shapelets的多元时间序列分类方法。首先,... 多元时间序列分类是众多领域的关键问题,但是当前多元时序分类研究面临着原始数据高维、精度不足、可解释性缺乏等问题,这使得模型性能提升受限,准确率难以满足实际需求。针对上述问题,提出基于Shapelets的多元时间序列分类方法。首先,利用自适应邻居的无监督Shapelet学习将Shapelet变换与自适应权重结合,用于自动学习显著多元Shapelets;然后,将该方法与Shapelet相似性和类标约束项结合,增强模型可解释性和分类准确性;最后,提出模型的优化策略,用以获取最优的Shapelets,进一步提高模型的分类精度。与3种不同类型11个算法在11个公开数据集上进行比较,实验结果表明提出算法具有较高的分类精度。 展开更多
关键词 多元时间序列 多元时间序列分类 shapelets学习 优化策略
在线阅读 下载PDF
BDMFuse:Multi-scale network fusion for infrared and visible images based on base and detail features
2
作者 SI Hai-Ping ZHAO Wen-Rui +4 位作者 LI Ting-Ting LI Fei-Tao Fernando Bacao SUN Chang-Xia LI Yan-Ling 《红外与毫米波学报》 北大核心 2025年第2期289-298,共10页
The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method f... The fusion of infrared and visible images should emphasize the salient targets in the infrared image while preserving the textural details of the visible images.To meet these requirements,an autoencoder-based method for infrared and visible image fusion is proposed.The encoder designed according to the optimization objective consists of a base encoder and a detail encoder,which is used to extract low-frequency and high-frequency information from the image.This extraction may lead to some information not being captured,so a compensation encoder is proposed to supplement the missing information.Multi-scale decomposition is also employed to extract image features more comprehensively.The decoder combines low-frequency,high-frequency and supplementary information to obtain multi-scale features.Subsequently,the attention strategy and fusion module are introduced to perform multi-scale fusion for image reconstruction.Experimental results on three datasets show that the fused images generated by this network effectively retain salient targets while being more consistent with human visual perception. 展开更多
关键词 infrared image visible image image fusion encoder-decoder multi-scale features
在线阅读 下载PDF
Effects of silica fume on the multi-scale material properties of composite Portland cement-based cutoff wall backfill
3
作者 ZHOU Tan HU Jian-hua +2 位作者 ZHAO Feng-wen GUO Meng-meng XUE Sheng-guo 《Journal of Central South University》 2025年第1期205-219,共15页
Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutof... Soil cement bentonite(SCB)is a common material for constructing vertical cutoff walls to prevent groundwater migration at contaminated industrial sites.However,site contaminants can degrade the durability of the cutoff wall.To enhance its performance,this study developed a silica fume-SCB(SSCB).The macroscopic and microscopic properties of SSCB were assessed by unconfined compressive strength test,variable head permeability test,X-ray diffraction(XRD),scanning electron microscopy(SEM)and nuclear magnetic resonance(NMR)spectroscopy.The correlation between its multi-scale properties was analyzed based on pore characteristics.The results indicate that increasing the silica fume substitution ratio improved SSCB strength,especially in the middle and late curing stages.Moreover,increasing the substitution ratio decreased SSCB permeability coefficient,with a more pronounced effect in earlier curing stages.Silica fume addition also refined SSCB pore structure and reduced its porosity.The fractal dimension was used to quantify SSCB pore structure complexity.Increasing silica fume content reduced small pore fractal dimension in SSCB.Concurrently,SSCB strength increased and SSCB permeability coefficient decreased.The findings of this research will demonstrate the great potential of SSCB backfill for practical applications. 展开更多
关键词 silica fume SSCB cutoff wall multi-scale material properties engineering properties microscopic mechanism
在线阅读 下载PDF
基于符号表示的可度量shapelets提取的时序分类研究 被引量:1
4
作者 王礼勤 万源 罗颖 《计算机科学》 CSCD 北大核心 2024年第8期106-116,共11页
在时序分类问题中,基于符号表示的shapelets提取方法具有良好的分类精度和分类效率,但对符号进行质量度量的过程,如计算TFIDF分数,耗时较长且计算量大,导致分类效率较低。此外,提取的shapelets候选数量仍然较多,判别力有待提高。针对这... 在时序分类问题中,基于符号表示的shapelets提取方法具有良好的分类精度和分类效率,但对符号进行质量度量的过程,如计算TFIDF分数,耗时较长且计算量大,导致分类效率较低。此外,提取的shapelets候选数量仍然较多,判别力有待提高。针对这些问题,本文提出了一种基于符号表示的可度量shapelets提取方法,该方法包含时间序列数据预处理、确定shapelets候选集和学习shapelets 3个阶段,可以快速得到高质量shapelets。在数据预处理阶段,将时间序列转化为符号聚合近似(SAX)表示以降低原始时间序列的维度。在确定shapelets候选集阶段,利用Bloom过滤器过滤重复的SAX词,并将过滤后的SAX词存储在哈希表中进行质量度量。随后,对SAX词的相似性进行判别,基于相似性和覆盖度等概念确定最终的shapelets候选集。在学习shapelets阶段,采用logistic回归模型学得真正的shapelets用于时序分类。在32个数据集上进行了大量实验,实验结果表明,所提方法的平均分类精度和平均分类效率均排名第二。与现有的基于shapelets的时序分类方法相比,该方法可以在保证精度的同时提高分类效率,并且具有良好的可解释性。 展开更多
关键词 时间序列分类 shapelet SAX表示 BLOOM过滤器 LOGISTIC回归
在线阅读 下载PDF
基于对抗策略类别特定的多样性时间序列shapelets提取
5
作者 罗颖 万源 王礼勤 《计算机科学》 CSCD 北大核心 2024年第5期35-44,共10页
在时间序列分类任务中,通过提取时间序列的shapelets进行分类的方法因分类准确率高且具有良好的可解释性而受到广泛关注。针对现有方法学习到的shapelets是所有类共享,可以区分大多数类但不能准确地区分某一类和其他类,以及使用对抗策... 在时间序列分类任务中,通过提取时间序列的shapelets进行分类的方法因分类准确率高且具有良好的可解释性而受到广泛关注。针对现有方法学习到的shapelets是所有类共享,可以区分大多数类但不能准确地区分某一类和其他类,以及使用对抗策略的模型生成的shapelets存在多样性不足等问题,提出了一种基于对抗策略类别特定的多样性时间序列shapelets提取方法。该方法将类别信息嵌入时间序列,采用多生成器模块对抗地生成多个有差别的类别特定shapelets,再通过施加差异约束来提高shapelets的多样性,最后使用shapelet转换得到的特征对时间序列进行分类。在36个时间序列数据集上与5种基于shapelets的算法和11种先进的分类算法进行实验对比,实验结果表明,所提方法分别在36个数据集中的26个和20个数据集上取得了最优结果,且均取得了最高的平均秩,平均分类准确率相比其他方法最少提高了2.4%,最多提高了17.8%。消融性分析以及可视化分析验证了多样性和类别特定的思路在时间序列分类上的有效性。 展开更多
关键词 时间序列 shapelets 类别特定 多样性 对抗网络
在线阅读 下载PDF
基于u-shapelets聚类的刀具剩余寿命预测方法 被引量:1
6
作者 王妍 胡小锋 刘颖超 《计算机集成制造系统》 EI CSCD 北大核心 2024年第4期1286-1295,共10页
针对不同刀具的性能衰退规律呈现出多种趋势,单一固定的全局模型难以对不同性能衰退规律的刀具进行准确剩余寿命预测的问题,提出一种基于u-shapelets聚类与长短时记忆网络(LSTM)模型相结合的刀具剩余寿命预测方法。首先,对刀具加工过程... 针对不同刀具的性能衰退规律呈现出多种趋势,单一固定的全局模型难以对不同性能衰退规律的刀具进行准确剩余寿命预测的问题,提出一种基于u-shapelets聚类与长短时记忆网络(LSTM)模型相结合的刀具剩余寿命预测方法。首先,对刀具加工过程监控信号提取u-shapelets集合,并计算各u-shapelet与时间序列的距离得到距离矩阵;其次,通过基于密度聚类方法对距离矩阵进行聚类,得到聚类结果;最后,根据聚类结果基于各类别数据分别训练长短时记忆网络模型进行刀具剩余寿命的预测。以轮槽铣刀加工过程监控数据进行验证,并与Kmeans聚类、谱聚类、层次聚类、DBSCAN聚类方法进行比较,验证了所提方法的有效性。 展开更多
关键词 过程监控数据 u-shapelets聚类 聚类算法 长短时记忆网络 刀具剩余寿命预测
在线阅读 下载PDF
Disparity estimation for multi-scale multi-sensor fusion
7
作者 SUN Guoliang PEI Shanshan +2 位作者 LONG Qian ZHENG Sifa YANG Rui 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期259-274,共16页
The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results ... The perception module of advanced driver assistance systems plays a vital role.Perception schemes often use a single sensor for data processing and environmental perception or adopt the information processing results of various sensors for the fusion of the detection layer.This paper proposes a multi-scale and multi-sensor data fusion strategy in the front end of perception and accomplishes a multi-sensor function disparity map generation scheme.A binocular stereo vision sensor composed of two cameras and a light deterction and ranging(LiDAR)sensor is used to jointly perceive the environment,and a multi-scale fusion scheme is employed to improve the accuracy of the disparity map.This solution not only has the advantages of dense perception of binocular stereo vision sensors but also considers the perception accuracy of LiDAR sensors.Experiments demonstrate that the multi-scale multi-sensor scheme proposed in this paper significantly improves disparity map estimation. 展开更多
关键词 stereo vision light deterction and ranging(LiDAR) multi-sensor fusion multi-scale fusion disparity map
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
8
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network multi-scale feature extraction Residual dense block
在线阅读 下载PDF
Ship recognition based on HRRP via multi-scale sparse preserving method
9
作者 YANG Xueling ZHANG Gong SONG Hu 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期599-608,共10页
In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) ba... In order to extract the richer feature information of ship targets from sea clutter, and address the high dimensional data problem, a method termed as multi-scale fusion kernel sparse preserving projection(MSFKSPP) based on the maximum margin criterion(MMC) is proposed for recognizing the class of ship targets utilizing the high-resolution range profile(HRRP). Multi-scale fusion is introduced to capture the local and detailed information in small-scale features, and the global and contour information in large-scale features, offering help to extract the edge information from sea clutter and further improving the target recognition accuracy. The proposed method can maximally preserve the multi-scale fusion sparse of data and maximize the class separability in the reduced dimensionality by reproducing kernel Hilbert space. Experimental results on the measured radar data show that the proposed method can effectively extract the features of ship target from sea clutter, further reduce the feature dimensionality, and improve target recognition performance. 展开更多
关键词 ship target recognition high-resolution range profile(HRRP) multi-scale fusion kernel sparse preserving projection(MSFKSPP) feature extraction dimensionality reduction
在线阅读 下载PDF
基于改进shapelet转换的油井异常工况识别
10
作者 王立达 李克文 +1 位作者 牛小楠 田继林 《计算机工程与设计》 北大核心 2025年第4期1079-1086,共8页
针对现有的油井异常工况识别通常是根据示功图数据直接给出判断结果,不具备可解释性,不利于生产人员判断处理等问题,提出一种基于shapelet转换的油井异常工况识别方法。根据示功图时间序列特点,通过计算示功图曲线的差值序列得到额外特... 针对现有的油井异常工况识别通常是根据示功图数据直接给出判断结果,不具备可解释性,不利于生产人员判断处理等问题,提出一种基于shapelet转换的油井异常工况识别方法。根据示功图时间序列特点,通过计算示功图曲线的差值序列得到额外特征,限制shapelet作用范围避免错误匹配,引入间隔shapelet捕捉长时特征三点针对性改进,提高shapelet转换算法在油井异常工况数据集的应用效果。实验结果表明,该方法在保证了较高分类准确率的同时,具备较好可解释性,可为异常工况识别与处置提供可靠建议。 展开更多
关键词 油井 示功图 异常检测 工况识别 时间序列分类 最大区分子序列 可解释性
在线阅读 下载PDF
Unconditionally stable Crank-Nicolson algorithm with enhanced absorption for rotationally symmetric multi-scale problems in anisotropic magnetized plasma
11
作者 WEN Yi WANG Junxiang XU Hongbing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期65-73,共9页
Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is ... Large calculation error can be formed by directly employing the conventional Yee’s grid to curve surfaces.In order to alleviate such condition,unconditionally stable CrankNicolson Douglas-Gunn(CNDG)algorithm with is proposed for rotationally symmetric multi-scale problems in anisotropic magnetized plasma.Within the CNDG algorithm,an alternative scheme for the simulation of anisotropic plasma is proposed in body-of-revolution domains.Convolutional perfectly matched layer(CPML)formulation is proposed to efficiently solve the open region problems.Numerical example is carried out for the illustration of effectiveness including the efficiency,resources,and absorption.Through the results,it can be concluded that the proposed scheme shows considerable performance during the simulation. 展开更多
关键词 anisotropic magnetized plasma body-of-revolution(BOR) Crank-Nicolson Douglas-Gunn(CNDG) finite-difference time-domain(FDTD) perfectly matched layer(PML) rotationally symmetric multi-scale problems
在线阅读 下载PDF
基于逻辑shapelets转换的时间序列分类算法 被引量:15
12
作者 原继东 王志海 +1 位作者 韩萌 游洋 《计算机学报》 EI CSCD 北大核心 2015年第7期1448-1459,共12页
时间序列shapelets是序列之中最具有辨别性的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将其发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程并能够灵活应用不同的分类策略.但此方法也存在不... 时间序列shapelets是序列之中最具有辨别性的子序列.解决时间序列分类问题的有效途径之一是通过shapelets转换技术,将其发现与分类器的构建相分离,其主要优点是优化了shapelets的选择过程并能够灵活应用不同的分类策略.但此方法也存在不足,仅仅简单地应用这些shapelets而忽略它们之间的逻辑组合关系,有可能降低分类的效果;另外,离线式的发现shapelets的过程是相当耗时的.文中针对后一个问题,采用了一种基于智能缓存的计算重用技术,将发现shapelets的时间复杂度降低了一个数量级.在此基础上,作者提出了一种基于合取或析取的逻辑shapelets转换方法,并通过在多个经典的基准数据集上测试,表明了该方法能够在提升分类准确性的同时保持shapelets所具有的解释力. 展开更多
关键词 时间序列 分类 shapelets 逻辑shapelets
在线阅读 下载PDF
一种基于Shapelets的懒惰式时间序列分类算法 被引量:11
13
作者 王志海 张伟 +1 位作者 原继东 刘海洋 《计算机学报》 EI CSCD 北大核心 2019年第1期29-43,共15页
近些年,时间序列分类问题研究受到了越来越多的关注.基于shapelets的时间序列分类技术是一种有效的方法.然而,其在提取最优shapelet的过程中要建立包含大量冗余元素的候选shapelets集合,一般所获得的shapelets只在平均意义上具有某种鉴... 近些年,时间序列分类问题研究受到了越来越多的关注.基于shapelets的时间序列分类技术是一种有效的方法.然而,其在提取最优shapelet的过程中要建立包含大量冗余元素的候选shapelets集合,一般所获得的shapelets只在平均意义上具有某种鉴别性;与此同时,普通模型往往忽略了待分类实例所具有的局部特征.为此,我们提出了一种依据待分类实例显著局部特征的懒惰式分类模型.这种模型为每个待分类实例构建各自的数据驱动的懒惰式shapelets分类模型,从而逐步缩小了与其分类相关的时间序列搜索空间,使得所获得的shapelets能够直接反映待分类实例的显著局部特征.实验结果表明该文提出的模型具有较高的准确率和更强的可解释性. 展开更多
关键词 时间序列 懒惰式学习 分类 shapelets 可解释性
在线阅读 下载PDF
基于改进型shapelets算法的动车组轴箱轴承故障诊断方法研究 被引量:11
14
作者 宋志坤 徐立成 +2 位作者 胡晓依 任海星 李强 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第2期66-74,共9页
现存的两种分别基于信号处理技术和大数据处理技术的滚动轴承故障诊断方法,存在着过度依赖信号处理、模型复杂、可解释性弱等特点。针对传统故障诊断技术的不足,本文将基于shapelets学习算法的时间序列分类方法引入故障诊断领域,通过动... 现存的两种分别基于信号处理技术和大数据处理技术的滚动轴承故障诊断方法,存在着过度依赖信号处理、模型复杂、可解释性弱等特点。针对传统故障诊断技术的不足,本文将基于shapelets学习算法的时间序列分类方法引入故障诊断领域,通过动车组轮对台架滚振实验建立了动车组轴箱轴承故障的非平衡数据集,并基于Dropout思想对诊断模型进行了改进。实验结果表明,该方法在保证故障诊断精确度的同时,保留了shapelets作为"最具代表性的时间序列子序列"的强可解释性。同时,基于Dropout的模型改进提升了模型的泛化性能,在轴承故障数据的训练集和测试集上都取得了100%的诊断精度,证明了基于shapelets的改进学习算法是一种可行的应用于动车组轴箱轴承故障诊断的方法。 展开更多
关键词 故障诊断 滚动轴承 shapelets 机器学习 动车组
在线阅读 下载PDF
基于多样化top-k shapelets转换的时间序列分类方法 被引量:13
15
作者 孙其法 闫秋艳 闫欣鸣 《计算机应用》 CSCD 北大核心 2017年第2期335-340,共6页
针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shap... 针对基于shapelets转换的时间序列分类方法中候选shapelets存在较大相似性的问题,提出一种基于多样化top-k shapelets转换的分类方法 Div Top KShapelet。该方法采用多样化top-k查询技术,去除相似shapelets,并筛选出最具代表性的k个shapelets集合,最后以最优shapelets集合为特征对数据集进行转换,达到提高分类准确率及时间效率的目的。实验结果表明,Div Top KShapelet分类方法不仅比传统分类方法具有更高的准确率,而且与使用聚类筛选的方法(Cluster Shapelet)和shapelets覆盖的方法(Shapelet Selection)相比,分类准确率最多提高了48.43%和32.61%;同时在所有15个数据集上均有计算效率的提升,最少加速了1.09倍,最高可达到287.8倍。 展开更多
关键词 时间序列分类 shapelets 多样化top-k
在线阅读 下载PDF
一种使用shapelets的增量式时间序列分类 被引量:1
16
作者 丁剑 王树英 《计算机科学》 CSCD 北大核心 2016年第5期257-260,293,共5页
根据时间序列数据维度高、实值有序、数据间存在自相关性等特点,对时间序列分类过程进行研究。研究了当前比较流行的时间序列分类方法;从图像处理的角度出发,提出了一种将图片信息转化为时间序列数据的ITTS方法。shapelets作为最能够表... 根据时间序列数据维度高、实值有序、数据间存在自相关性等特点,对时间序列分类过程进行研究。研究了当前比较流行的时间序列分类方法;从图像处理的角度出发,提出了一种将图片信息转化为时间序列数据的ITTS方法。shapelets作为最能够表示一条时间序列的子序列,随着时间的推移,这个特征序列可能会动态地发生变化。基于这样的思想,提出了一种基于动态发现shapelets的增量式时间序列分类算法IPST。该算法能够较好地动态发现当前最优的k个shapelets,从而提高时间序列分类的准确度。得到的shapelets集合还可以与多个传统的分类器结合,从而获得更佳的分类效果。 展开更多
关键词 时间序列 分类 shapelets 图像转化 增量式学习
在线阅读 下载PDF
基于相似性连接的时间序列Shapelets提取 被引量:3
17
作者 张振国 王超 +1 位作者 温延龙 袁晓洁 《计算机研究与发展》 EI CSCD 北大核心 2019年第3期594-610,共17页
在时间序列分类问题中,以Shapelets特征为基础的分类算法具有很高的分类准确率和良好的可解释性,因此,高辨别能力Shapelets的提取已成为时间序列研究领域重要的研究热点之一.对于Shapelets提取的研究已取得了很多优秀的成果,但仍存在一... 在时间序列分类问题中,以Shapelets特征为基础的分类算法具有很高的分类准确率和良好的可解释性,因此,高辨别能力Shapelets的提取已成为时间序列研究领域重要的研究热点之一.对于Shapelets提取的研究已取得了很多优秀的成果,但仍存在一些问题,主要是由于通过遍历所有子序列来获取Shapelets的方式非常耗时.尽管可以采取剪枝策略优化该过程,但往往会损失分类准确率.为此,提出一种基于相似性连接的Shapelets提取方法,该方法舍弃逐一判断子序列分类能力的策略,而是以子序列为单位,通过相似性连接的思想构建时序数据间的相似性向量.对于不同类别的时序数据,计算每一对时序数据间的差异向量,进而得到表示时序数据集中不同类别间差异的候选矩阵,然后根据候选矩阵的数值差异,快速筛选出具有高分类能力的Shapelets集合.在真实数据集上的大量实验表明:相比于现有的Shapelets提取方法,这种相似性连接方法所得到的Shapelets在分类任务中不仅具有很好的时间效率,而且能保证高分类准确率. 展开更多
关键词 时间序列 shapelets 相似性连接 差异向量 候选矩阵
在线阅读 下载PDF
基于最佳u-shapelets的时间序列聚类算法 被引量:7
18
作者 余思琴 闫秋艳 闫欣鸣 《计算机应用》 CSCD 北大核心 2017年第8期2349-2356,共8页
针对基于u-shapelets的时间序列聚类中u-shapelets集合质量较低的问题,提出一种基于最佳u-shapelets的时间序列聚类算法Div Ushap Cluster。首先,探讨不同子序列质量评估方法对基于u-shapelets的时间序列聚类结果的影响;然后,选用最佳... 针对基于u-shapelets的时间序列聚类中u-shapelets集合质量较低的问题,提出一种基于最佳u-shapelets的时间序列聚类算法Div Ushap Cluster。首先,探讨不同子序列质量评估方法对基于u-shapelets的时间序列聚类结果的影响;然后,选用最佳的子序列质量评估方法对u-shapelet候选集进行质量评估;其次,引入多元top-k查询技术对u-shapelet候选集进行去除冗余操作,搜索出最佳的u-shapelets集合;最后,利用最佳u-shapelets集合对原始数据集进行转化,达到提高时间序列聚类准确率的目的。实验结果表明,Div Ushap Cluster算法在聚类准确度上不仅优于经典的时间序列聚类算法,而且与Brute Force算法和SUSh算法相比,Div Ushap Cluster算法在22个数据集上的平均聚类准确度分别提高了18.80%和19.38%。所提算法能够在保证整体效率的情况下有效提高时间序列的聚类准确度。 展开更多
关键词 时间序列 聚类 u-shapelets 内部聚类评价指标 多元化top-k查询
在线阅读 下载PDF
基于Shapelet转换的安徽省小麦赤霉病气象等级预报方法
19
作者 徐祥 周鹿扬 +2 位作者 黄澈 张萌 徐建鹏 《中南农业科技》 2024年第8期114-120,共7页
为探讨小麦赤霉病预测预报方法,基于安徽省小麦赤霉病中高风险区域的寿县、庐江县、宣城市3个代表站1986—2020年小麦赤霉病病穗率及气象观测资料,采用Shapelet转换时间序列分类方法,通过分析不同气象要素各等级特征序列及信息增益,建... 为探讨小麦赤霉病预测预报方法,基于安徽省小麦赤霉病中高风险区域的寿县、庐江县、宣城市3个代表站1986—2020年小麦赤霉病病穗率及气象观测资料,采用Shapelet转换时间序列分类方法,通过分析不同气象要素各等级特征序列及信息增益,建立了基于Shapelet转换的气象等级预报模型,并使用随机森林、Bagging、AdaBoost三种分类器对模型进行预测检验。结果表明,赤霉病的重发生与连续降水、连续无日照高度相关,而轻发生与关键期内出现持续无降水或极少降水量相关,重发生的相对湿度特征序列中存在持续性总体上升趋势,气温信息增益普遍较低。3种分类器模型预测等级与实际等级相差基本在1个等级以内,预测模型对轻发生、偏重以上发生预测效果好,利用随机森林分类器回算预报等级与实际等级基本一致。建立的小麦赤霉病气象等级预报方法可用于农业气象业务服务。 展开更多
关键词 小麦赤霉病 气象等级 预报方法 shapelet转换 随机森林分类器 安徽省
在线阅读 下载PDF
基于shapelets学习的多元时间序列分类 被引量:3
20
作者 赵慧赟 潘志松 《计算机科学》 CSCD 北大核心 2018年第5期180-184,219,共6页
多元时间序列广泛存在于日常生活中的各个领域,多元时间序列分类是从时间序列数据中获取信息的基本方法。目前,时间序列分类研究面临着相似性度量方法特殊、原始数据维度高等问题,现有的多元时间序列分类方法的分类性能仍有待提高。文... 多元时间序列广泛存在于日常生活中的各个领域,多元时间序列分类是从时间序列数据中获取信息的基本方法。目前,时间序列分类研究面临着相似性度量方法特殊、原始数据维度高等问题,现有的多元时间序列分类方法的分类性能仍有待提高。文中提出一种基于shapelets学习的多元时间序列分类方法。首先,提出了新的正则化最小二乘损失学习框架下的shapelets学习方法,在此基础上采用基于shapelets的一元时间序列分类方法对多元时间序列的每维一元数据进行分类,随后由各维上的分类结果投票决定多元时间序列的最终分类结果。实验证明,所提方法在多元时间序列分类问题中能够取得较高的分类精度。 展开更多
关键词 多元时间序列 分类 shapelets shapelets学习
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部