To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on ...To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on game the-ory and the confrontation characteristics of air combat,a dynamic game process is constructed including the strategy sets,the situation information,and the maneuver decisions for both sides of air combat.By analyzing the UAV’s flight dyna-mics and the both sides’information,a payment matrix is estab-lished through the situation advantage function,performance advantage function,and profit function.Furthermore,the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution,where the decision tree method is introduced to obtain the optimal maneuver decision,thereby improving the situation advantage in the next round of confrontation.According to the analysis,the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advan-tages of the proposed method.展开更多
私有函数计算(private function evaluation,PFE)的目的是安全地计算函数f(x1,x2,···,xn),而不泄露除了输出所揭示的信息之外的任何其他信息,适用于计算多方联合数据集的大数据分析任务,且其分析算法f是不方便公开的.Moh...私有函数计算(private function evaluation,PFE)的目的是安全地计算函数f(x1,x2,···,xn),而不泄露除了输出所揭示的信息之外的任何其他信息,适用于计算多方联合数据集的大数据分析任务,且其分析算法f是不方便公开的.Mohassel等在EUROCRYPT 2013提出了一个基于多方秘密共享方案(GMW)的被动安全多方私有函数计算方案,他们的协议具有线性轮交互,不适用于高延迟网络,限制了多方私有函数计算的实用性.针对上述问题,本文利用Ben-Efraim等人的优化多方混淆电路BMR方案、Katz等人的基于同态加密的不经意扩展置换方案(HE-OEP)和Mohassel等人的基于交换网络的不经意扩展置换方案(SN-OEP),通过隐藏由函数f编译得到的电路Cf的拓扑结构达到保护电路私有性的目的,分别构造基于同态加密的多方私有函数计算协议ΠBMR-PFE(HE-OEP)和基于交换网络的多方私有函数计算协议ΠBMR-PFE(SN-OEP).所提两个协议都具有常数交互轮次,前者主要基于非对称密码原语构造,具有线性复杂度O(g),交互轮次可以压缩至7轮;后者主要基于对称密码原语构造,具有复杂度O(g log(g)),交互轮次可以压缩至8轮.所提方案能够抵抗半诚实敌手腐化最多n−1个参与方,在大多数不信任的参与方的协议执行环境下,这能够有效保护自己重要的私有数据财产,避免因数据泄露而被侵犯利益.另外,所提协议与2023年Xu等人提出的协议具有相近的通信、计算复杂度和交互轮次,当参与方数量从5开始,在电路门数量级在2^(10)∼2^(20)之间,所提协议对比他们的协议具有更低的通信开销,而混淆电路提出至今,通信开销一直是其性能瓶颈,因此所提基于多方混淆电路的常数轮多方私有函数计算方案,能够有效提升高延迟网络环境下计算大型电路时多方私有函数计算协议的效率.展开更多
基金supported by the Major Projects for Science and Technology Innovation 2030(2018AAA0100805).
文摘To address the confrontation decision-making issues in multi-round air combat,a dynamic game decision method is proposed based on decision tree for the confrontation of unmanned aerial vehicle(UAV)air combat.Based on game the-ory and the confrontation characteristics of air combat,a dynamic game process is constructed including the strategy sets,the situation information,and the maneuver decisions for both sides of air combat.By analyzing the UAV’s flight dyna-mics and the both sides’information,a payment matrix is estab-lished through the situation advantage function,performance advantage function,and profit function.Furthermore,the dynamic game decision problem is solved based on the linear induction method to obtain the Nash equilibrium solution,where the decision tree method is introduced to obtain the optimal maneuver decision,thereby improving the situation advantage in the next round of confrontation.According to the analysis,the simulation results for the confrontation scenarios of multi-round air combat are presented to verify the effectiveness and advan-tages of the proposed method.
文摘私有函数计算(private function evaluation,PFE)的目的是安全地计算函数f(x1,x2,···,xn),而不泄露除了输出所揭示的信息之外的任何其他信息,适用于计算多方联合数据集的大数据分析任务,且其分析算法f是不方便公开的.Mohassel等在EUROCRYPT 2013提出了一个基于多方秘密共享方案(GMW)的被动安全多方私有函数计算方案,他们的协议具有线性轮交互,不适用于高延迟网络,限制了多方私有函数计算的实用性.针对上述问题,本文利用Ben-Efraim等人的优化多方混淆电路BMR方案、Katz等人的基于同态加密的不经意扩展置换方案(HE-OEP)和Mohassel等人的基于交换网络的不经意扩展置换方案(SN-OEP),通过隐藏由函数f编译得到的电路Cf的拓扑结构达到保护电路私有性的目的,分别构造基于同态加密的多方私有函数计算协议ΠBMR-PFE(HE-OEP)和基于交换网络的多方私有函数计算协议ΠBMR-PFE(SN-OEP).所提两个协议都具有常数交互轮次,前者主要基于非对称密码原语构造,具有线性复杂度O(g),交互轮次可以压缩至7轮;后者主要基于对称密码原语构造,具有复杂度O(g log(g)),交互轮次可以压缩至8轮.所提方案能够抵抗半诚实敌手腐化最多n−1个参与方,在大多数不信任的参与方的协议执行环境下,这能够有效保护自己重要的私有数据财产,避免因数据泄露而被侵犯利益.另外,所提协议与2023年Xu等人提出的协议具有相近的通信、计算复杂度和交互轮次,当参与方数量从5开始,在电路门数量级在2^(10)∼2^(20)之间,所提协议对比他们的协议具有更低的通信开销,而混淆电路提出至今,通信开销一直是其性能瓶颈,因此所提基于多方混淆电路的常数轮多方私有函数计算方案,能够有效提升高延迟网络环境下计算大型电路时多方私有函数计算协议的效率.