传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, ...传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。展开更多
A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All o...A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All operations required for building and maintaining the map, such as model-setting, data association, and state-updating, are described and formulated. This approach has been programmed and successfully tested in the simulation work, and results are shown at the end of this paper.展开更多
[目的/意义]在大田作业、野外放牧、果园采收等典型农业应用场景下,多机器人(包括移动式智能农机装备等)高精度快速协同同步定位与建图(Simultaneous Localization and Mapping,SLAM)是智慧农业乃至无人农场的关键基础和核心支撑。与单...[目的/意义]在大田作业、野外放牧、果园采收等典型农业应用场景下,多机器人(包括移动式智能农机装备等)高精度快速协同同步定位与建图(Simultaneous Localization and Mapping,SLAM)是智慧农业乃至无人农场的关键基础和核心支撑。与单机器人SLAM相比,多机器人协同SLAM具有精度高、范围广、实时性强、扩展性好等优势,但在农业种植和养殖等自然复杂环境下,由于场景动态可变、地形复杂多变、环境丰富多样、通信约束受限等多重因素叠加影响,尚存在诸多问题与挑战。[进展]现有研究主要是从通用基础技术的视角对多机器人SLAM的研究脉络、优缺点、适用条件和关键核心问题等方面进行总结归纳,但缺乏针对农业复杂场景特性的剖析。本研究面向农业复杂场景的主要特征,以“多传感器数据融合—协同定位—协同建图—回环检测”为关键技术主线,分析了多机器人协同SLAM的优缺点及其在农业领域的适用性;从多机器人协同作业的视角,明晰了集中式、分布式和混合式三种主要协同框架的优势、局限性及适用的典型农业应用场景;进而探讨了农业复杂场景下多机器人SLAM存在的多传感器融合精度偏低、协同通信环境受限、相对位姿估计准确性不高等突出问题。[结论/展望]从优化数据融合底层算法、融合深度学习和强化学习、引入大语言模型、应用数字孪生技术等方面,对农业复杂环境下多机器人SLAM的未来发展方向和趋势进行了展望。展开更多
为解决移动机器人扩展卡尔曼滤波(EKF-SLAM)算法计算复杂、精确度不高及易受干扰的缺点,提出一种基于最优平滑滤波理论的改进同步定位与地图构建(simultaneous localization and mapping,SLAM)算法。详细介绍算法的改进过程,通过Matlab...为解决移动机器人扩展卡尔曼滤波(EKF-SLAM)算法计算复杂、精确度不高及易受干扰的缺点,提出一种基于最优平滑滤波理论的改进同步定位与地图构建(simultaneous localization and mapping,SLAM)算法。详细介绍算法的改进过程,通过Matlab软件对其位置轨迹跟踪误差及标准差进行仿真分析,基于机器人操作系统(robot operating system,ROS)系统的实验平台,在室内走廊进行SLAM实验以测试改进算法的效果。结果表明,改进的SLAM算法精度高、抗干扰能力强,能实现移动机器人的即时定位与地图构建。基于ROS系统的软件平台能简化开发难度,提升移动机器人的智能化。展开更多
针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法...针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。展开更多
提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利...提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利用粒子滤波定位时,使粒子只分布在由航位推算法得出的机器人位姿附近,从而可有效地减少粒子的数量。实验结果表明,与标准的粒子滤波SLAM算法比较,改进算法提高了机器人SLAM过程中定位和地图创建的精度和实时性,并为移动机器人在室外未知环境同时定位和地图创建提供了新方法。展开更多
针对未知环境中移动机器人同时定位和地图创建(Simultaneous Localization and Map Building,SLAM)由于机器人位姿和环境地图都不确定导致定位和地图创建变得更加复杂,提出一种局部最优(全局次优)参数法,即通过局部最优的位姿创建局部...针对未知环境中移动机器人同时定位和地图创建(Simultaneous Localization and Map Building,SLAM)由于机器人位姿和环境地图都不确定导致定位和地图创建变得更加复杂,提出一种局部最优(全局次优)参数法,即通过局部最优的位姿创建局部最优的环境地图,再通过局部最优的环境地图寻求局部最优的位姿,如此交替进行,直到得到全局确定性的位姿和确定性的环境地图。实验结果表明,同标准的基于粒子滤波的SLAM算法(Particle Filtering-SLAM,PF-SLAM)比较,改进的算法提高了机器人SLAM过程中定位的准确度和地图创建的精确度,为机器人在未知的室外大环境同时定位和地图创建提供新的方法。展开更多
基于特征的视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)存在实时性和鲁棒性差等问题,提出一种改进的基于四叉树的ORB特征提取方法,设计包含前后端及地图构建的机器人RGB-D SLAM算法。在前端使用四叉树方法完成...基于特征的视觉同时定位与地图构建(Simultaneous Localization and Mapping,SLAM)存在实时性和鲁棒性差等问题,提出一种改进的基于四叉树的ORB特征提取方法,设计包含前后端及地图构建的机器人RGB-D SLAM算法。在前端使用四叉树方法完成ORB特征的均匀提取,计算描述子间汉明距离实现特征匹配。根据随机采样一致性算法思想,结合EPNP(Efficient Perspective-N-Point)和迭代最近点法求解位姿,获取多次迭代后的准确位姿。采用关键帧进行回环检测,并且基于光速法平差优化位姿图,从而构建全局一致的3D地图,达到减少累积误差的目的。通过TUM数据集和多履带式全向移动机器人进行对比验证,实验结果满足实时性和稳定性要求,证明了算法的可行性和有效性。展开更多
文摘传统的温室作业方式依赖于人工操作,工作效率低且难以保证作业的质量和稳定性。温室自主导航系统可以实现温室内自动化导航和作业,提高温室作物的生产效率和品质。因此,设计一种定位与地图构建(Simultaneous Localization And Mapping, SLAM)技术下的温室自主导航系统,可利用激光雷达等传感器实时构建温室内的地图,并利用SLAM算法实现自主定位与导航。为了提高系统的鲁棒性和性能,提出了一种基于改进粒子滤波算法的姿态估计方法。试验结果表明:该温室自主导航系统能够高效准确地实现温室内的自主导航任务,为农业生产提供了一种新的自动化解决方案。
基金Supported by National Natural Science Foundation of P. R. China (60475031)
文摘A line-feature based SLAM algorithm is presented in this paper to resolve the conflict between the requirements of computational complexity and information-richness within the point-feature based SLAM algorithm, All operations required for building and maintaining the map, such as model-setting, data association, and state-updating, are described and formulated. This approach has been programmed and successfully tested in the simulation work, and results are shown at the end of this paper.
文摘[目的/意义]在大田作业、野外放牧、果园采收等典型农业应用场景下,多机器人(包括移动式智能农机装备等)高精度快速协同同步定位与建图(Simultaneous Localization and Mapping,SLAM)是智慧农业乃至无人农场的关键基础和核心支撑。与单机器人SLAM相比,多机器人协同SLAM具有精度高、范围广、实时性强、扩展性好等优势,但在农业种植和养殖等自然复杂环境下,由于场景动态可变、地形复杂多变、环境丰富多样、通信约束受限等多重因素叠加影响,尚存在诸多问题与挑战。[进展]现有研究主要是从通用基础技术的视角对多机器人SLAM的研究脉络、优缺点、适用条件和关键核心问题等方面进行总结归纳,但缺乏针对农业复杂场景特性的剖析。本研究面向农业复杂场景的主要特征,以“多传感器数据融合—协同定位—协同建图—回环检测”为关键技术主线,分析了多机器人协同SLAM的优缺点及其在农业领域的适用性;从多机器人协同作业的视角,明晰了集中式、分布式和混合式三种主要协同框架的优势、局限性及适用的典型农业应用场景;进而探讨了农业复杂场景下多机器人SLAM存在的多传感器融合精度偏低、协同通信环境受限、相对位姿估计准确性不高等突出问题。[结论/展望]从优化数据融合底层算法、融合深度学习和强化学习、引入大语言模型、应用数字孪生技术等方面,对农业复杂环境下多机器人SLAM的未来发展方向和趋势进行了展望。
文摘针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。
文摘提出一种改进的粒子滤波SLAM(simultaneous localization and map building)同时定位和地图创建实现方法。改进方法让机器人大约行进10步完成基于局部已创建地图下的粒子滤波定位后,再利用激光传感器探测环境并更新创建的地图;同时在利用粒子滤波定位时,使粒子只分布在由航位推算法得出的机器人位姿附近,从而可有效地减少粒子的数量。实验结果表明,与标准的粒子滤波SLAM算法比较,改进算法提高了机器人SLAM过程中定位和地图创建的精度和实时性,并为移动机器人在室外未知环境同时定位和地图创建提供了新方法。