The planar-integrated magneto-optical trap(PIMOT)offers a promising platform for miniaturizing cold atom systems,but its performance and laser-power efficiency are limited by the typically Gaussian profile of the inpu...The planar-integrated magneto-optical trap(PIMOT)offers a promising platform for miniaturizing cold atom systems,but its performance and laser-power efficiency are limited by the typically Gaussian profile of the input laser beam.In this work,we present a simplified and cost-effective beam shaping solution to transform the Gaussian input into a flat-top intensity distribution using a compact system of four spherical lenses.The reshaped light field could potentially enhances PIMOT performance by improving the uniformity of the optical radiation pressure and increasing the trap distance from the chip surface.With this approach,we demonstrate a substantial reduction in the optical power required to trap 2.5×10^(5)^(87)Rb atoms,down to 30%compared to a standard Gaussian beam input.Our results open the door to more efficient and flexible PIMOT systems for quantum sensing,metrology,and atom-based quantum technology.展开更多
This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXR...This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXRD of the symmetrical 004 reflections and asymmetrical 115 reflections.The calculation results show that the Sb component was 0.6 in the InAs_(x)Sb_(1-x)thin film grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3,which has the highest electron mobility(28560 cm^(2)/V·s)at 300 K.At the same time,the influence ofⅤ/Ⅲratio on the transport properties and crystal quality of Al_(0.2)In_(0.8)Sb/InAs_(x)Sb_(1-x)quantum well heterostructures also has been investigated.As a result,the Al_(0.2)In_(0.8)Sb/InAs_(0.4)Sb_(0.6)quantum well heterostructure with a channel thickness of 30 nm grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3 has a maximum electron mobility of 28300 cm^(2)/V·s and a minimum RMS roughness of 0.68 nm.Through optimizing the growth conditions,our samples have higher electron mobility and smoother surface morphology.展开更多
On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low e...On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.展开更多
Off-axis-rotating elliptical Gaussian beams(Oare GB)oblique incidence in strong nonlocal medium exhibit novel propagation properties.The analytical expressions of semi-axial beam widths,and center-of-mass trajectory e...Off-axis-rotating elliptical Gaussian beams(Oare GB)oblique incidence in strong nonlocal medium exhibit novel propagation properties.The analytical expressions of semi-axial beam widths,and center-of-mass trajectory equations for transmitting off-axis-rotating elliptical Gaussian beams in strong nonlocal media are obtained using the ABCD transfer matrix method.The study revealed that the trajectory of the mass's center in the cross-section can be controlled by changing the sizes of the Oare GB parameters c,d,ζ,and f.The gradient force of the light field causes the spot region to form a spatial potential well in the media,and this spatial potential well can effectively capture nanoparticles.The particles captured by the light field can move along with the beam,realizing the effective manipulation of the particle trajectory.These laws may be applied to modulating the propagation path of light beams and optical tweezer technology.展开更多
Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment se...Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment secondary emission electron gun is suitable for the technology.To enhance the beam current,COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap.The anode shape and discharge pressure conditions were optimized to increase plasma density.Additionally,an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects.This design modification aims to increase the pass rate of secondary electrons.Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced.When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa,the maximum beam current was increased from 0.9 mA to 1.6 mA.展开更多
In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is com...In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.展开更多
The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus...The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.展开更多
Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to ins...Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.展开更多
Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical ...We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.展开更多
Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively ...Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping(JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game,and the Nash equilibrium(NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedybased BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%,156.06%, 15.39% and 8.17%, respectively.展开更多
The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three...The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.展开更多
Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation ...Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.展开更多
The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with tim...The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.展开更多
Nano-optomechanical systems,capable of supporting enhanced light-matter interactions,have wide applications in studying quantum entanglement and quantum information processors.Yet,preparing optical telecomband entangl...Nano-optomechanical systems,capable of supporting enhanced light-matter interactions,have wide applications in studying quantum entanglement and quantum information processors.Yet,preparing optical telecomband entanglement within a single optomechanical nanobeam remains blank.We propose and design a triply resonant optomechanical nanobeam to generate steady-state entangled propagating optical modes and present its quantum-enhanced performance for teleportation-based quantum state transfer under realistic conditions.Remarkably,the entanglement quantified by logarithmic negativity can obtain E_(N)=1.Furthermore,with structural imperfections induced by realistic fabrication processes considered,the device still shows great robustness.Together with quantum interfaces between mechanical motion and solid-state qubit processors,the proposed device potentially paves the way for versatile nodes in long-distance quantum networks.展开更多
In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,t...In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.展开更多
The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitud...The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.展开更多
We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pear...We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.展开更多
基金supported by the National Key R&D Program(Grant Nos.2021YFA1402004 and 2021YFF0603701)the National Natural Science Foundation of China(Grants Nos.12134014,U21A20433,U21A6006,and 92265108)+1 种基金supported by the Fundamental Research Funds for the Central UniversitiesUSTC Research Funds of the Double First-Class Initiative。
文摘The planar-integrated magneto-optical trap(PIMOT)offers a promising platform for miniaturizing cold atom systems,but its performance and laser-power efficiency are limited by the typically Gaussian profile of the input laser beam.In this work,we present a simplified and cost-effective beam shaping solution to transform the Gaussian input into a flat-top intensity distribution using a compact system of four spherical lenses.The reshaped light field could potentially enhances PIMOT performance by improving the uniformity of the optical radiation pressure and increasing the trap distance from the chip surface.With this approach,we demonstrate a substantial reduction in the optical power required to trap 2.5×10^(5)^(87)Rb atoms,down to 30%compared to a standard Gaussian beam input.Our results open the door to more efficient and flexible PIMOT systems for quantum sensing,metrology,and atom-based quantum technology.
基金Supported by the Natural Science Basic Research Program of Shaanxi Province(2023-JC-QN-0758)Shaanxi University of Science and Technology Research Launch Project(2020BJ-26)Doctoral Research Initializing Fund of Hebei University of Science and Technology,China(1181476).
文摘This paper discusses the influence of Sb/In ratio on the transport properties and crystal quality of the 200 nm InAs_(x)Sb_(1-x)thin film.The Sb content of InAs_(x)Sb_(1-x)thin film in all samples was verified by HRXRD of the symmetrical 004 reflections and asymmetrical 115 reflections.The calculation results show that the Sb component was 0.6 in the InAs_(x)Sb_(1-x)thin film grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3,which has the highest electron mobility(28560 cm^(2)/V·s)at 300 K.At the same time,the influence ofⅤ/Ⅲratio on the transport properties and crystal quality of Al_(0.2)In_(0.8)Sb/InAs_(x)Sb_(1-x)quantum well heterostructures also has been investigated.As a result,the Al_(0.2)In_(0.8)Sb/InAs_(0.4)Sb_(0.6)quantum well heterostructure with a channel thickness of 30 nm grown under the conditions of Sb/In ratio of 6 and As/In ratio of 3 has a maximum electron mobility of 28300 cm^(2)/V·s and a minimum RMS roughness of 0.68 nm.Through optimizing the growth conditions,our samples have higher electron mobility and smoother surface morphology.
基金the financial support from National Natural Science Foundation of China (Nos. 62192771, 12374344, 12221004)National Key Research and Development Program of China (2022YFA1204700, 2020YFA0710100)+1 种基金Natural Science Foundation of Shanghai (Grant No. 23dz2260100)China Postdoctoral Science Foundation 2021TQ0077
文摘On-chip devices for generating pre-designed vectorial optical fields(VOFs)under surface wave(SW)excitations are highly desired in integrated photonics.However,conventional devices are usually of large footprints,low efficiencies,and limited wave-control capabilities.Here,we present a generic approach to design ultra-compact on-chip devices that can efficiently generate pre-designed VOFs under SW excitations,and experimentally verify the concept in terahertz(THz)regime.We first describe how to design SW-excitation metasurfaces for generating circularly polarized complex beams,and experimentally demonstrate two meta-devices to realize directional emission and focusing of THz waves with oppo-site circular polarizations,respectively.We then establish a systematic approach to construct an integrated device via merging two carefully designed metasurfaces,which,under SW excitations,can separately produce pre-designed far-field patterns with different circular polarizations and generate target VOF based on their interference.As a proof of con-cept,we demonstrate experimentally a meta-device that can generate a radially polarized Bessel beam under SW excita-tion at~0.4 THz.Experimental results agree well with full-wave simulations,collectively verifying the performance of our device.Our study paves the road to realizing highly integrated on-chip functional THz devices,which may find many ap-plications in biological sensing,communications,displays,image multiplexing,and beyond.
基金Project supported by the National Natural Science Foundation of China(Grant No.62075047)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2020GXNSFDA297019)。
文摘Off-axis-rotating elliptical Gaussian beams(Oare GB)oblique incidence in strong nonlocal medium exhibit novel propagation properties.The analytical expressions of semi-axial beam widths,and center-of-mass trajectory equations for transmitting off-axis-rotating elliptical Gaussian beams in strong nonlocal media are obtained using the ABCD transfer matrix method.The study revealed that the trajectory of the mass's center in the cross-section can be controlled by changing the sizes of the Oare GB parameters c,d,ζ,and f.The gradient force of the light field causes the spot region to form a spatial potential well in the media,and this spatial potential well can effectively capture nanoparticles.The particles captured by the light field can move along with the beam,realizing the effective manipulation of the particle trajectory.These laws may be applied to modulating the propagation path of light beams and optical tweezer technology.
文摘Electron beam fluorescence technology is an advanced non-contact measurement in rarefied flow fields,and the fluorescence signal intensity is positively correlated with the electron beam current.The ion bombardment secondary emission electron gun is suitable for the technology.To enhance the beam current,COMSOL simulations and analyses were conducted to examine plasma density distribution in the discharge chamber under the effects of various conditions and the electric field distribution between the cathode and the spacer gap.The anode shape and discharge pressure conditions were optimized to increase plasma density.Additionally,an improved spacer structure was designed with the dual purpose of enhancing the electric field distribution between the cathode-spacer gaps and improving vacuum differential effects.This design modification aims to increase the pass rate of secondary electrons.Both simulation and experimental results demonstrated that the performance of the optimized electron gun was effectively enhanced.When the electrode voltage remains constant and the discharge gas pressure is adjusted to around 8 Pa,the maximum beam current was increased from 0.9 mA to 1.6 mA.
基金supported by ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220719005。
文摘In this paper,a dual-polarized antenna operating at 3.5 GHz is presented with 2D beam-scanning performance.The steerable beam is realized based on a 2×2 active reflective metasurface.The active metasurface is composed of folded annular rings and cross dipoles embedded with voltage-controlled varactor diodes.By tuning the capacitance values of the varactors,the reflective phase of the metasurface is reconfigured to tilt the main beam.To verify the scanning performance,a prototype is fabricated and measured.At 3.5 GHz,the measured scanning ranges are from-25°to 29°and-27°to 29°in the XOZ and YOZ planes,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12033007,61801458,12103058,12203058,12074309,and 61875205)the Key Project of Frontier Science Research of the Chinese Academy of Sciences(Grant No.QYZDB-SSW-SLH007)+2 种基金the Strategic Priority Research Program of CAS(Grant No.XDC07020200)the Youth Innovation Promotion Association,CAS(Grant Nos.2021408,2022413,and 2023425)the Research on Highly Sensitive Long-Wave Receiver Based on Rydberg Atoms(Grant No.1P2024000059)。
文摘The Bessel-like vector vortex beam(BlVVB)has gained increasing significance across numerous applications.However,its practical application is restricted by manufacturing difficulties and polarization manipulation.Thus,the ability to manipulate its degrees of freedom is highly desirable.In this paper,the full-domain polarization modulation of BlVVB within a hot atomic ensemble has been investigated.We begin with the theoretical analysis of the resonant magneto-optical effect of atoms with a horizontal linear-polarized beam and experimentally demonstrate precise manipulation of the polarization state across the entire domain of the BlVVB,achieving an error margin of less than 3°at various cross-sectional points.Our study provides a novel approach for the modulation of BlVVB based on atomic media,which holds potential applications in sensitive vector magnetometers,optical communications,and signal processing.
文摘Tunable Airy beams with controllable propagation trajectories have sparked interest in various fields,such as optical manipulation and laser fabrication.Existing research approaches encounter challenges related to insufficient compactness and integration feasibility,or they require enhanced tunability to enable real-time dynamic manipulation of the propagation trajectory.In this work,we present a novel method that utilizes a dual metasurface system to surpass these limitations,significantly enhancing the practical potential of the Airy beam.Our approach involves encoding a cubic phase profile and two off-axis Fresnel lens phase profiles across the two metasurfaces.The validity of the proposed strategy has been confirmed through simulation and experimental results.The proposed meta-device addresses the existing limitations and lays the foundation for broadening the applicability of Airy beams across diverse domains,encompassing light-sheet microscopy,laser fabrication,optical tweezers,etc.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
基金This work was supported by the Science and Technology Innovation Training Program of Nanjing University of Posts and Telecommunications(Grant No.CXXZD2023080)the National Natural Science Foundation of China(Grant Nos.61871234 and 62001249)+1 种基金the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant No.NY222133)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘We analyze the properties of a focused Laguerre–Gaussian(LG)beam propagating through anisotropic ocean turbulence based on the Huygens–Fresnel principle.Under the Rytov approximation theory,we derive the analytical formula of the channel capacity of the focused LG beam in the anisotropic ocean turbulence,and analyze the relationship between the capacity and the light source parameters as well as the turbulent ocean parameters.It is found that the focusing mirror can greatly enhance the channel capacity of the system at the geometric focal plane in oceanic turbulence.The results also demonstrate that the communication link can obtain high channel capacity by adopting longer beam wavelength,greater initial beam waist radius,and larger number of transmission channels.Further,the capacity of the system increases with the decrease of the mean squared temperature dissipation rate,temperature-salinity contribution ratio and turbulence outer scale factor,and with the increase of the kinetic energy dissipation rate per unit mass of fluid,turbulence inner scale factor and anisotropy factor.Compared to a Hankel–Bessel beam with diffraction-free characteristics and unfocused LG beam,the focused LG beam shows superior anti-turbulence interference properties,which provide a theoretical reference for research and development of underwater optical communication links using focused LG beams.
基金supported by the National Key Research and Development Program of China 2021YFB2900504, 2020YFB1807900。
文摘Low earth orbit(LEO) satellite communications can provide ubiquitous and reliable services,making it an essential part of the Internet of Everything network. Beam hopping(BH) is an emerging technology for effectively addressing the issue of low resource utilization caused by the non-uniform spatio-temporal distribution of traffic demands. However, how to allocate multi-dimensional resources in a timely and efficient way for the highly dynamic LEO satellite systems remains a challenge. This paper proposes a joint beam scheduling and power optimization beam hopping(JBSPO-BH) algorithm considering the differences in the geographic distribution of sink nodes. The JBSPO-BH algorithm decouples the original problem into two sub-problems. The beam scheduling problem is modelled as a potential game,and the Nash equilibrium(NE) point is obtained as the beam scheduling strategy. Moreover, the penalty function interior point method is applied to optimize the power allocation. Simulation results show that the JBSPO-BH algorithm has low time complexity and fast convergence and achieves better performance both in throughput and fairness. Compared with greedybased BH, greedy-based BH with the power optimization, round-robin BH, Max-SINR BH and satellite resource allocation algorithm, the throughput of the proposed algorithm is improved by 44.99%, 20.79%,156.06%, 15.39% and 8.17%, respectively.
基金This work was supported by the Shanghai Municipal Science and Technology Major Project(No.2017SHZDZX02)the National Natural Science Foundation of China(No.12005282)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021283)the Shanghai Pilot Program for Basic Research—Chinese Academy of Science,Shanghai Branch(JCYJSHFY-2021-010).
文摘The Shanghai high-repetition-rate X-ray free-electron laser and extreme light facility(SHINE)operates at a maximum repetition rate of 1 MHz.Kicker magnets are key components that distribute electron bunches into three different undulator lines in a bunch-by-bunch mode.The kicker field width must be less than the time interval between bunches.A lumpedinductance kicker prototype was developed using a vacuum chamber with a single-turn coil.The full magnetic field strength was 0.005 T.This paper presents the requirements,design considerations,design parameters,magnetic field calculations,and measurements of the kicker magnets.The relevant experimental results are also presented.The pulse width of the magnetic field was approximately 600 ns,and the maximum operation repetition rate was 1 MHz.The developed kicker satisfies the requirements for the SHINE project.Finally,numerous recommendations for the future optimization of kicker magnets are provided.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFF01014706 and 2017YFC0601901)the National Natural Science Foundation of China (Grant Nos.61571019 and 52177026)。
文摘Josephson junction plays a key role not only in studying the basic physics of unconventional iron-based superconductors but also in realizing practical application of thin-film based devices,therefore the preparation of high-quality iron pnictide Josephson junctions is of great importance.In this work,we have successfully fabricated Josephson junctions from Co-doped BaFe_(2)As_(2)thin films using a direct junction fabrication technique which utilizes high energy focused helium ion beam(FHIB).The electrical transport properties were investigated for junctions fabricated with various He^(+)irradiation doses.The junctions show sharp superconducting transition around 24 K with a narrow transition width of 2.5 K,and a dose correlated foot-structure resistance which corresponds to the effective tuning of junction properties by He^(+)irradiation.Significant J_c suppression by more than two orders of magnitude can be achieved by increasing the He^(+)irradiation dose,which is advantageous for the realization of low noise ion pnictide thin film devices.Clear Shapiro steps are observed under 10 GHz microwave irradiation.The above results demonstrate the successful fabrication of high quality and controllable Co-doped BaFe_(2)As_(2)Josephson junction with high reproducibility using the FHIB technique,laying the foundation for future investigating the mechanism of iron-based superconductors,and also the further implementation in various superconducting electronic devices.
基金supported by the National Key R&D Program of China under grant 2020YFB1804901the National Natural Science Foundation of China under grant 62341102。
文摘The multiple-input multiple-output(MIMO)-enabled beamforming technology offers great data rate and channel quality for next-generation communication.In this paper,we propose a beam channel model and enable it with time-varying simulation capability by adopting the stochastic geometry theory.First,clusters are generated located within transceivers'beam ranges based on the Mate?rn hardcore Poisson cluster process.The line-of-sight,singlebounce,and double-bounce components are calculated when generating the complex channel impulse response.Furthermore,we elaborate on the expressions of channel links based on the propagation-graph theory.A birth-death process consisting of the effects of beams and cluster velocities is also formulated.Numerical simulation results prove that the proposed model can capture the channel non-stationarity.Besides,the non-reciprocal beam patterns yield severe channel dispersion compared to the reciprocal patterns.
基金supported by the Sichuan Science and Technology Program(Grant Nos.2022YFSY0061,2022YFSY0062,2022YFSY0063,2023YFSY0060,2023YFSY0058,and 2023YFSY0059)the National Key Research and Development Program of China(Grant No.2022YFA1405900)+1 种基金the National Natural Science Foundation of China(Grant Nos.92365106,62005039,91836102,U19A2076,12074058,and 62174010)the Innovation Program for Quantum Science and Technology(Grant Nos.2021ZD0300701 and 2021ZD0301702)。
文摘Nano-optomechanical systems,capable of supporting enhanced light-matter interactions,have wide applications in studying quantum entanglement and quantum information processors.Yet,preparing optical telecomband entanglement within a single optomechanical nanobeam remains blank.We propose and design a triply resonant optomechanical nanobeam to generate steady-state entangled propagating optical modes and present its quantum-enhanced performance for teleportation-based quantum state transfer under realistic conditions.Remarkably,the entanglement quantified by logarithmic negativity can obtain E_(N)=1.Furthermore,with structural imperfections induced by realistic fabrication processes considered,the device still shows great robustness.Together with quantum interfaces between mechanical motion and solid-state qubit processors,the proposed device potentially paves the way for versatile nodes in long-distance quantum networks.
基金supported by National Natural Science Foundation of China(No.12102099)the National Key R&D Program of China(No.2021YFC2202700)the Outstanding Academic Leader Project of Shanghai(Youth)(No.23XD1421700),respectively。
文摘In this study,a pulsed,high voltage driven hollow-cathode electron beam sources through an optical trigger is designed with characteristics of simple structure,low cost,and easy triggering.To validate the new design,the characteristics of hollow-cathode discharge and electron beam characterization under pulsed high voltage drive are studied experimentally and discussed by discharge characteristics and analyses of waveform details,respectively.The validation experiments indicate that the pulsed high voltage supply significantly improves the frequency and stability of the discharge,which provides a new solution for the realization of a high-frequency,high-energy electron beam source.The peak current amplitude in the high-energy electron beam increases from 6.2 A to 79.6 A,which indicates the pulsed power mode significantly improves the electron beam performance.Besides,increasing the capacitance significantly affects the highcurrent,lower-energy electron beam more than the high-energy electron beam.
基金Project supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020029)。
文摘The ultrashort lasers working in pulse-burst mode reveal great machining performance in recent years. The number of pulses in bursts effects greatly on the removal rate and roughness. To generate a more equal amplitude of pulses in burst with linear polarization output and time gap adjustable, we propose a new method by the harmonic beam combining(HBC).The beam combining is commonly used in adding pulses into the output beam while maintaining the pulse waveform and beam quality. In the HBC, dichroic mirrors are used to combine laser pulses of fundamental wave(FW) into harmonic wave(HW), and nonlinear crystals are used to convert the FW into HW. Therefore, HBC can add arbitrarily more HW pulses to generate pulse-burst in linear polarization with simple structure. The amplitude of each pulse in bursts can be adjusted the same to increase the stability of the burst, the time gap of each pulse can be adjusted precisely by proper time delay. Because HBC adds pulses sequentially, the peak power density of the burst is the same as each pulse, pulses can be combined without concern of back-conversion which often occurs in high peak power density. In the demonstration, the extendibility of HBC was verified by combining two beams with a third beam. The combined efficiency rates were larger than 99%, and the beam quality of each beam was maintained at M^(2)≈1.4.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604058)the Guangxi Natural Science Foundation(Grant Nos.2020GXNSFAA297041 and 2023JJA110112)the Innovation Project of Guangxi Graduate Education(Grant No.YCSW2023083)。
文摘We systemically investigate optical trapping capability of a kind of tornado waves on Rayleigh particles.Such tornado waves are named as tornado circular Pearcey beams(TCPBs)and produced by combining two circular Pearcey beams with different radii.Our theoretical exploration delves into various aspects,including the propagation dynamics,energy flux,orbital angular momentum,trapping force,and torque characteristics of TCPBs.The results reveal that the orbital angular momentum,trapping force,and torque of these beams can be finely tuned through the judicious manipulation of their topological charges(l_(1)and l_(2)).Notably,we observe a precise control mechanism wherein the force diminishes with|l_(1)+l_(2)|and|l_(1)-l_(2)|,while the torque exhibits enhancement by decreasing solely with|l_(1)+l_(2)|or increasing with|l_(1)-l_(2)|.These results not only provide quantitative insights into the optical trapping performance of TCPBs but also serve as a valuable reference for the ongoing development of innovative photonic tools.