Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need ...Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.展开更多
Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was prop...Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was proposed over specific operation range. Weighted objective function of airfoil lift-drag ratio was constructed for several operation points around the designing one. Airfoil was defined by parametric B-spline curve of limited shape controlling points. Results show that normal standard airfoils have remained spaces to be optimized under specific operation conditions. Airfoil performance is sensitive to flow′s Reynolds number and cascade solidity. Predicting flow transition along airfoil profile is essential to search for optimized one. Optimized airfoil of wide operation range is possible to obtain with prescribed fitness function. Obtainments of multi-point optimization may be relatively lower at design point, but positive obtainments are achieved at off-design ones. Resulted airfoil is specially suitable for axial flow fans operating frequently at off-design point such as air condition coolers.展开更多
文摘Multi-point forming (MPF) is an advanced manufacturing technology for three-dimensional sheet metal parts. In this paper, the MPF integrated system is described that can form a variety of part shapes without the need for solid dies, and given only geometry and material information about the desired part. The central component of this system is a pair of matrices of punches, and the desired discrete die surface is constructed by changing the positions of punches though the CAD and control system. The basic MPF process is introduced and the typical application examples show the applicability of the MPF technology. Wrinkle and dimple are the major forming defects in MPF process, numerical simulation is a feasible way to predict forming defects in MPF. In conventional stamping, the mode to form sheet metal with blankholder is an effective way to suppress wrinkling; the same is true in MPF. A MPF press with flexible blankholder was developed, and the forming results indicated the forming stability of this technique. Based on the flexibility of MPF, varying deformation path MPF and sectional MPF were explored that cannot be realized in conventional stamping. By controlling each punch in real-time, a sheet part can be manufactured along a specific forming path. When the path of deformation in MPF is designed properly, forming defects will be avoided completely and lager deformation is achieved. A work piece can be formed section by section though the sectional MPF, and this technique makes it possible to manufacture large size parts in a small MPF press. Some critical experiments were performed that confirmed the validity of two special MPF techniques.
基金Strategic Leading Project of Shanghai Municipal Science Committee(16DZ1121202)
文摘Airfoil is the element of fan blade design. It is strongly anticipated to design a fan of ave- raged high performance over a wide operation range. Multi-point optimization design of airfoil for axial flow fan was proposed over specific operation range. Weighted objective function of airfoil lift-drag ratio was constructed for several operation points around the designing one. Airfoil was defined by parametric B-spline curve of limited shape controlling points. Results show that normal standard airfoils have remained spaces to be optimized under specific operation conditions. Airfoil performance is sensitive to flow′s Reynolds number and cascade solidity. Predicting flow transition along airfoil profile is essential to search for optimized one. Optimized airfoil of wide operation range is possible to obtain with prescribed fitness function. Obtainments of multi-point optimization may be relatively lower at design point, but positive obtainments are achieved at off-design ones. Resulted airfoil is specially suitable for axial flow fans operating frequently at off-design point such as air condition coolers.