Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize t...Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize the high network capacity by appropriate multi- path routing algorithms. As flow-level path splitting may lead to trafl'ic imbalance between paths due to flow- size difference, packet-level path splitting attracts more attention lately, which spreads packets from flows into multiple available paths and significantly improves link utilizations. However, it may cause packet reordering, confusing the TCP congestion control algorithm and lowering the throughput of flows. In this paper, we design a novel packetlevel multi-path routing scheme called SOPA, which leverag- es OpenFlow to perform packet-level path splitting in a round- robin fashion, and hence significantly mitigates the packet reordering problem and improves the network throughput. Moreover, SOPA leverages the topological feature of data center networks to encode a very small number of switches along the path into the packet header, resulting in very light overhead. Compared with random packet spraying (RPS), Hedera and equal-cost multi-path routing (ECMP), our simulations demonstrate that SOPA achieves 29.87%, 50.41% and 77.74% higher network throughput respectively under permutation workload, and reduces average data transfer completion time by 53.65%, 343.31% and 348.25% respectively under production workload.展开更多
The routing protocols play an important role for ad hoc networks performance.As some problems with DSR,SMR,and AMR protocols were analyzed,a new routing protocol suitable for UWB Ad hoc networks was proposed in this p...The routing protocols play an important role for ad hoc networks performance.As some problems with DSR,SMR,and AMR protocols were analyzed,a new routing protocol suitable for UWB Ad hoc networks was proposed in this paper.The new routing protocol utilize an act of orientation of UWB and tries to get sufficient route information and decrease the network load caused by route discovery at the same time.Simulation results show that the routing load of the new protocol is lower and throughput is higher than that of DSR.While the node’s mobility increases,these advantages become more obvious.展开更多
The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has bec...The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data.展开更多
This paper proposes a new on-demand multi-alternate-path algorithm, called quickly switching routing algorithm(QSRA). It switches failure routing to an alternate path as quickly as the network can. Like a nervure shap...This paper proposes a new on-demand multi-alternate-path algorithm, called quickly switching routing algorithm(QSRA). It switches failure routing to an alternate path as quickly as the network can. Like a nervure shape, algorithm QSRA shapes disjoint-alternate-path structure, but is not limited to. It also contains another structure that every primary node has several links to alternate paths. This structure has two advantages, the first one is that primary nodes can select one alternate path immediately when primary routing is failure without going back to source node to re-discover a new routing or choose an alternate path; the second is that it guarantees primary nodes can select another alternate path as quickly as possible once one of alternate paths fails. Strongpoint of algorithm QSRA is reducing frequency of routing re-discovering. Besides, the structure occupies fewer resources than other routing algorithms due to its distributed structure. Simulation shows that QSRA has higher packets received ratio and lower control packet overhead and lower end-to-end delay.展开更多
In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of ...In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and mai...The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.展开更多
One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Netw...One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.展开更多
Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env...Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.展开更多
高速服务器主板主芯片到存储器的高速信号传输通过Double Data Rate(简称DDR)技术实现,传输高速信号的连接线简称为DDR阻抗线。因主芯片相对存储器位置能布设管脚的空间要小,从主芯片到存储器的DDR高速阻抗线呈扇出形状,主芯片位置的阻...高速服务器主板主芯片到存储器的高速信号传输通过Double Data Rate(简称DDR)技术实现,传输高速信号的连接线简称为DDR阻抗线。因主芯片相对存储器位置能布设管脚的空间要小,从主芯片到存储器的DDR高速阻抗线呈扇出形状,主芯片位置的阻抗线线宽相对存储器位置要小,存在阻抗不连续问题。对靠近主芯片位置的DDR阻抗线增加规则的凸耳状走线可提升整段DDR阻抗不匹配问题。增加规则的凸耳走线的阻抗线又称Tabbed Routiing阻抗(简称TAB阻抗)。探究布设不同形状和不同尺寸的TAB设计来提升阻抗不连续问题,根据材料等级选择一种最佳的布线设计模式,对TAB阻抗设计及生产制作控制都有较大指导意义。展开更多
Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS sat...Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.展开更多
针对LAR路由协议的区域策略,提出一种改进的路由协议TTI-LAR。通过引进拦截时间(Time to Intercept)权值选择参与路由的中间节点,有效地降低了网络开销,提高了路由的可靠性。仿真结果表明,TTI_LAR路由协议与LAR路由协议相比,性能得到进...针对LAR路由协议的区域策略,提出一种改进的路由协议TTI-LAR。通过引进拦截时间(Time to Intercept)权值选择参与路由的中间节点,有效地降低了网络开销,提高了路由的可靠性。仿真结果表明,TTI_LAR路由协议与LAR路由协议相比,性能得到进一步改善。展开更多
A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TO...A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TORA is based on a kind of swarm intelligence (SI) mechanism, i. e. , ant colony optimization. Firstly, the ener- gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en- ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms, TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de- lay effect under the data-gathering condition.展开更多
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route...In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.展开更多
The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellit...The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning.展开更多
In this paper, we study transmission of packets with time constraints in cooperative 5G wireless networks. As we know, the packets which are transmitted with large delay become useless and have to be dropped. In order...In this paper, we study transmission of packets with time constraints in cooperative 5G wireless networks. As we know, the packets which are transmitted with large delay become useless and have to be dropped. In order to minimize packet dropping probability, we consider multiple transmission methods and integrate packet scheduling with adaptive network coding method selection. Firstly we introduce queue length to obtain the gain of network. Based on this, we present the dynamic coding-aware routing metric, which can increase potential coding opportunities. Moreover, we propose a distributed packet-aware transmission routing scheme based on the above routing metric, which can discover the available paths timely and efficiently. Simulation results show that the proposed method can reduce average packet dropping probability with lower computational complexity.展开更多
The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizi...The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.展开更多
This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential ...This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision.展开更多
The rapid advancement of communication and satellite technology drives broadband satellite networks to carry different traffic loads.However,traffic class routing of satellite cannot be provided by the existing 2-laye...The rapid advancement of communication and satellite technology drives broadband satellite networks to carry different traffic loads.However,traffic class routing of satellite cannot be provided by the existing 2-layerd satellite networks.In this paper,a 2-layered satellite network composed of low-Earth orbit and medium-Earth orbit satellite networks is presented,and a novel Self-adapting Routing Protocol(SRP)is developed.This scheme aims to adopt self-adapting routing algorithm to support different traffic classes.Meanwhile,the path discovery processing is invoked independently for each individual origin/destination pair.Simulation results are provided to evaluate the performance of the new scheme in terms of end-to-end delay,normalized data throughput,delay jitter and delivery ratio.展开更多
Routing loops can cause packet loss and long delay problems in the traditional network. Even in future networks – Software-Defined Networks, with loop-free implementation mechanism, it still suffers loop problems. In...Routing loops can cause packet loss and long delay problems in the traditional network. Even in future networks – Software-Defined Networks, with loop-free implementation mechanism, it still suffers loop problems. In this paper, we propose an architecture to solve the loop problem in SDN. Unlike the existing passive routing loop detection algorithm, this algorithm processes based on the SDN loop-free characteristic, by auditing third-party network forwarding rules’ modification requests to avoids loop generation, thus avoid the network loop problems. Testbed is built to simulate our proposed algorithm. The evaluation shows that the loop audit algorithm proposed in this paper has better performance in extra spatial utilization and smaller number of extra interactions between SDN controller and switches.展开更多
基金supported by the National Basic Research Program of China(973 program)under Grant No.2014CB347800 and No.2012CB315803the National High-Tech R&D Program of China(863 program)under Grant No.2013AA013303+1 种基金the Natural Science Foundation of China under Grant No.61170291,No.61133006,and No.61161140454ZTE IndustryAcademia-Research Cooperation Funds
文摘Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize the high network capacity by appropriate multi- path routing algorithms. As flow-level path splitting may lead to trafl'ic imbalance between paths due to flow- size difference, packet-level path splitting attracts more attention lately, which spreads packets from flows into multiple available paths and significantly improves link utilizations. However, it may cause packet reordering, confusing the TCP congestion control algorithm and lowering the throughput of flows. In this paper, we design a novel packetlevel multi-path routing scheme called SOPA, which leverag- es OpenFlow to perform packet-level path splitting in a round- robin fashion, and hence significantly mitigates the packet reordering problem and improves the network throughput. Moreover, SOPA leverages the topological feature of data center networks to encode a very small number of switches along the path into the packet header, resulting in very light overhead. Compared with random packet spraying (RPS), Hedera and equal-cost multi-path routing (ECMP), our simulations demonstrate that SOPA achieves 29.87%, 50.41% and 77.74% higher network throughput respectively under permutation workload, and reduces average data transfer completion time by 53.65%, 343.31% and 348.25% respectively under production workload.
基金National Nature Science Foundation of China (No. 60496311)Nature Science Foundation of Jiangsu Province (No. BK2004067&BK2005409)Foundation of Huawei Technology (No. YJCB2004018NP).
文摘The routing protocols play an important role for ad hoc networks performance.As some problems with DSR,SMR,and AMR protocols were analyzed,a new routing protocol suitable for UWB Ad hoc networks was proposed in this paper.The new routing protocol utilize an act of orientation of UWB and tries to get sufficient route information and decrease the network load caused by route discovery at the same time.Simulation results show that the routing load of the new protocol is lower and throughput is higher than that of DSR.While the node’s mobility increases,these advantages become more obvious.
文摘The low Earth orbit(LEO)satellite networks have outstanding advantages such as wide coverage area and not being limited by geographic environment,which can provide a broader range of communication services and has become an essential supplement to the terrestrial network.However,the dynamic changes and uneven distribution of satellite network traffic inevitably bring challenges to multipath routing.Even worse,the harsh space environment often leads to incomplete collection of network state data for routing decision-making,which further complicates this challenge.To address this problem,this paper proposes a state-incomplete intelligent dynamic multipath routing algorithm(SIDMRA)to maximize network efficiency even with incomplete state data as input.Specifically,we model the multipath routing problem as a markov decision process(MDP)and then combine the deep deterministic policy gradient(DDPG)and the K shortest paths(KSP)algorithm to solve the optimal multipath routing policy.We use the temporal correlation of the satellite network state to fit the incomplete state data and then use the message passing neuron network(MPNN)for data enhancement.Simulation results show that the proposed algorithm outperforms baseline algorithms regarding average end-to-end delay and packet loss rate and performs stably under certain missing rates of state data.
文摘This paper proposes a new on-demand multi-alternate-path algorithm, called quickly switching routing algorithm(QSRA). It switches failure routing to an alternate path as quickly as the network can. Like a nervure shape, algorithm QSRA shapes disjoint-alternate-path structure, but is not limited to. It also contains another structure that every primary node has several links to alternate paths. This structure has two advantages, the first one is that primary nodes can select one alternate path immediately when primary routing is failure without going back to source node to re-discover a new routing or choose an alternate path; the second is that it guarantees primary nodes can select another alternate path as quickly as possible once one of alternate paths fails. Strongpoint of algorithm QSRA is reducing frequency of routing re-discovering. Besides, the structure occupies fewer resources than other routing algorithms due to its distributed structure. Simulation shows that QSRA has higher packets received ratio and lower control packet overhead and lower end-to-end delay.
基金funded by the Researchers Supporting Project Number RSPD2024R681,King Saud University,Riyadh,Saudi Arabia.
文摘In a post-disaster environment characterized by frequent interruptions in communication links,traditional wireless communication networks are ineffective.Although the“store-carry-forward”mechanism characteristic of Delay Tolerant Networks(DTNs)can transmit data from Internet of things devices to more reliable base stations or data centres,it also suffers from inefficient data transmission and excessive transmission delays.To address these challenges,we propose an intelligent routing strategy based on node sociability for post-disaster emergency network scenarios.First,we introduce an intelligent routing strategy based on node intimacy,which selects more suitable relay nodes and assigns the corresponding number of message copies based on comprehensive utility values.Second,we present an intelligent routing strategy based on geographical location of nodes to forward message replicas secondarily based on transmission utility values.Finally,experiments demonstrate the effectiveness of our proposed algorithm in terms of message delivery rate,network cost ratio and average transmission delay.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
基金supported in part by the National Natural Science Foundation of China under Grants 62171154in part by the National Natural Science Foundation of Shandong Province under Grant ZR2020MF007+1 种基金in part by the Research Fund Program of Guangdong Key Laboratory of Aerospace Communication and Networking Technology under Grant 2018B030322004in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2023030。
文摘The limited energy and high mobility of unmanned aerial vehicles(UAVs)lead to drastic topology changes in UAV formation.The existing routing protocols necessitate a large number of messages for route discovery and maintenance,greatly increasing network delay and control overhead.A energyefficient routing method based on the discrete timeaggregated graph(TAG)theory is proposed since UAV formation is a defined time-varying network.The network is characterized using the TAG,which utilizes the prior knowledge in UAV formation.An energyefficient routing algorithm is designed based on TAG,considering the link delay,relative mobility,and residual energy of UAVs.The routing path is determined with global network information before requesting communication.Simulation results demonstrate that the routing method can improve the end-to-end delay,packet delivery ratio,routing control overhead,and residual energy.Consequently,introducing timevarying graphs to design routing algorithms is more effective for UAV formation.
文摘One of the challenges of Informationcentric Networking(ICN)is finding the optimal location for caching content and processing users’requests.In this paper,we address this challenge by leveraging Software-defined Networking(SDN)for efficient ICN management.To achieve this,we formulate the problem as a mixed-integer nonlinear programming(MINLP)model,incorporating caching,routing,and load balancing decisions.We explore two distinct scenarios to tackle the problem.Firstly,we solve the problem in an offline mode using the GAMS environment,assuming a stable network state to demonstrate the superior performance of the cacheenabled network compared to non-cache networks.Subsequently,we investigate the problem in an online mode where the network state dynamically changes over time.Given the computational complexity associated with MINLP,we propose the software-defined caching,routing,and load balancing(SDCRL)algorithm as an efficient and scalable solution.Our evaluation demonstrates that the SDCRL algorithm significantly reduces computational time while maintaining results that closely resemble those achieved by GAMS.
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20210101417JC).
文摘Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.
文摘高速服务器主板主芯片到存储器的高速信号传输通过Double Data Rate(简称DDR)技术实现,传输高速信号的连接线简称为DDR阻抗线。因主芯片相对存储器位置能布设管脚的空间要小,从主芯片到存储器的DDR高速阻抗线呈扇出形状,主芯片位置的阻抗线线宽相对存储器位置要小,存在阻抗不连续问题。对靠近主芯片位置的DDR阻抗线增加规则的凸耳状走线可提升整段DDR阻抗不匹配问题。增加规则的凸耳走线的阻抗线又称Tabbed Routiing阻抗(简称TAB阻抗)。探究布设不同形状和不同尺寸的TAB设计来提升阻抗不连续问题,根据材料等级选择一种最佳的布线设计模式,对TAB阻抗设计及生产制作控制都有较大指导意义。
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2010AAxxx404)~~
文摘Due to the diversified demands of quality of service(QoS) in volume multimedia application, QoS routings for multiservice are becoming a research hotspot in low earth orbit(LEO) satellite networks. A novel QoS satellite routing algorithm for multi-class traffic is proposed. The goal of the routing algorithm is to provide the distinct QoS for different traffic classes and improve the utilization of network resources. Traffic is classified into three classes and allocated priorities based on their QoS requirements, respectively. A priority queuing mechanism guarantees the algorithm to work better for high-priority classes. In order to control the congestion, a blocking probability analysis model is built up based on the Markov process theory. Finally, according to the classification link-cost metrics, routings for different classes are calculated with the distinct QoS requirments and the status of network resource. Simulations verify the performance of the routing algorithm at different time and in different regions, and results demonstrate that the algorithm has great advantages in terms of the average delay and the blocking probability. Meanwhile, the robustness issue is also discussed.
基金Supported by the Foundation of National Natural Science of China(60802005,50803016)the Science Foundation for the Excellent Youth Scholars in East China University of Science and Technology(YH0157127)the Undergraduate Innovational Experimentation Program in East China University of Science andTechnology(X1033)~~
文摘A heuristic theoretical optimal routing algorithm (TORA) is presented to achieve the data-gathering structure of location-aided quality of service (QoS) in wireless sensor networks (WSNs). The construction of TORA is based on a kind of swarm intelligence (SI) mechanism, i. e. , ant colony optimization. Firstly, the ener- gy-efficient weight is designed based on flow distribution to divide WSNs into different functional regions, so the routing selection can self-adapt asymmetric power configurations with lower latency. Then, the designs of the novel heuristic factor and the pheromone updating rule can endow ant-like agents with the ability of detecting the local networks energy status and approaching the theoretical optimal tree, thus improving the adaptability and en- ergy-efficiency in route building. Simulation results show that compared with some classic routing algorithms, TORA can further minimize the total communication energy cost and enhance the QoS performance with low-de- lay effect under the data-gathering condition.
基金supported by the State Grid project which names the simulation and service quality evaluation technology research of power communication network(No.XX71-14-046)
文摘In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently.
基金supported in part by the National Natural Science Foundation of China (No. 61571104)the Sichuan Science and Technology Program (No. 2018JY0539)+2 种基金the Key projects of the Sichuan Provincial Education Department (No. 18ZA0219)the Fundamental Research Funds for the Central Universities (No. ZYGX2017KYQD170)the Innovation Funding (No. 2018510007000134)
文摘The integrated information network is a large capacity information network that integrates various communication platforms on the ground, at sea, in the air and in the deep air through the inter-satellite and satellite-ground links to acquire information accurately, process it quickly, and transmit it efficiently. The satellite communication, as an important part of integrated information networks, is one of main approaches to acquire, process and distribute communication information and resources. In this paper, based on current researches of the satellite communication network, we put forward a 3-layer satellite communication network model based on the Software Defined Network (SDN). Meanwhile, to improve current routing policies of the Low Earth Orbit (LEO) satellite communication network, we put forward an Adaptive Routing Algorithm (ARA) to sustain the shortest satellite communication link. Experiment results show that the proposed method can effectively reduce link distance and communication delay, and realize adaptive path planning.
基金supported by National Nature Science Foundation of China (61302071, 61501105, 91438110)the Fundamental Research Funds for the Central Universities (N150404015, N150404018)
文摘In this paper, we study transmission of packets with time constraints in cooperative 5G wireless networks. As we know, the packets which are transmitted with large delay become useless and have to be dropped. In order to minimize packet dropping probability, we consider multiple transmission methods and integrate packet scheduling with adaptive network coding method selection. Firstly we introduce queue length to obtain the gain of network. Based on this, we present the dynamic coding-aware routing metric, which can increase potential coding opportunities. Moreover, we propose a distributed packet-aware transmission routing scheme based on the above routing metric, which can discover the available paths timely and efficiently. Simulation results show that the proposed method can reduce average packet dropping probability with lower computational complexity.
基金the Program of “Study on Optimization and Supply-side Reliability of Oil Product Supply Chain Logistics System” funded under the National Natural Science Foundation of China, Grant Number 51874325
文摘The petrol truck routing problem is an important part of the petrol supply chain.This study focuses on determining routes for distributing petrol products from a depot to petrol stations with the objective of minimizing the total travel cost and the fixed cost required to use the trucks.We propose a mathematical model that considers petrol trucks returning to a depot multiple times and develop a heuristic algorithm based on a local branch-and-bound search with a tabu list and the Metropolis acceptance criterion.In addition,an approach that accelerates the solution process by adding several valid inequalities is presented.In this study,the trucks are homogeneous and have two compartments,and each truck can execute at most three tasks daily.The sales company arranges the transfer amount and the time windows for each station.The performance of the proposed algorithm is evaluated by comparing its results with the optimal results.In addition,a real-world case of routing petrol trucks in Beijing is studied to demonstrate the effectiveness of the proposed approach.
基金supported by the Young and Middle-aged Elitists' Scientific and Technological Innovation Team Project of the Institutions of Higher Education in Hubei Province under Grant No.T200902Natural Science Foundation of Hubei Province of China under Grant No.2010CDB05601Key Scientific Research Project of Hubei Education Department under Grants No.D20102205, Q20102202, Q20111610
文摘This paper provides a critical review of energy entropy theory in Mobile Ad Hoc Networks (MANETs) and proposes an Energy Entropy on Ad Hoc On-demand Distance Vector Multipath (EEAODVM) routing protocol. The essential idea of the protocol is to find every route which can minimize the node residual energy in the process of selecting path. It balances individual node battery energy utilization and hence prolongs the entire network lifetime. The results of simulation show that, with the proposed EEAODVM routing protocol, packet delivery ratio, routing overhead ratio, average end-to-end delay, network's lifetime and minimal residual energy ratio can be improved in most of cases. It is an available approach for multipath routing decision.
基金the Major Program of National Natural Science Foundation of China under Grant No. 60872041Natural Science Foundation of Guangdong Province under Grant No.10152104101000004the Fundamental Research Funds for the Central Universities under Grant No. JY10000970009
文摘The rapid advancement of communication and satellite technology drives broadband satellite networks to carry different traffic loads.However,traffic class routing of satellite cannot be provided by the existing 2-layerd satellite networks.In this paper,a 2-layered satellite network composed of low-Earth orbit and medium-Earth orbit satellite networks is presented,and a novel Self-adapting Routing Protocol(SRP)is developed.This scheme aims to adopt self-adapting routing algorithm to support different traffic classes.Meanwhile,the path discovery processing is invoked independently for each individual origin/destination pair.Simulation results are provided to evaluate the performance of the new scheme in terms of end-to-end delay,normalized data throughput,delay jitter and delivery ratio.
基金supported by the project of Ministry of science and technology special emphasis Research and Development Surveying and Mapping Cyberspace Resources (NO. 112044017001)Cernet Next Generation Internet Technology Innovation(No. NGII20170417)China Ministry of Education-CMCC Research Fund (No. MCM20170306)
文摘Routing loops can cause packet loss and long delay problems in the traditional network. Even in future networks – Software-Defined Networks, with loop-free implementation mechanism, it still suffers loop problems. In this paper, we propose an architecture to solve the loop problem in SDN. Unlike the existing passive routing loop detection algorithm, this algorithm processes based on the SDN loop-free characteristic, by auditing third-party network forwarding rules’ modification requests to avoids loop generation, thus avoid the network loop problems. Testbed is built to simulate our proposed algorithm. The evaluation shows that the loop audit algorithm proposed in this paper has better performance in extra spatial utilization and smaller number of extra interactions between SDN controller and switches.