Five factors expressing greenbelt quality and one factor expressing quantity were adopted for evaluation of the residential greenbelt, and the AHP (Analytical Hierarchy Process) method was used to determine the valu...Five factors expressing greenbelt quality and one factor expressing quantity were adopted for evaluation of the residential greenbelt, and the AHP (Analytical Hierarchy Process) method was used to determine the value of factors. Thirty residential areas were selected as the samples. Two principal components were extracted and their expression was constructed by method of factor anlysis, therefore, quality evaluation of residential greenbelt was obtained. The accuracy of the function and implement quality classification toward the residential greenbelts in Xinxiang City were validated by clustering analysis method. The results showed that the greenbelt quality of fourteen residential areas was higher than the average level, of which eleven were newly-built residential areas. The 30 residential areas were classified into three types according to their greenbelt features and their formation by clustering analysis method. Finally rational proposal basing on aforesaid evaluating results was proposed for construction and renewal of residential greenbelt, upon which directive basis was provided for construction and renewal of residential greenbelt.展开更多
Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the S...Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare these methods. We offer the correct syntax to deactivate the similarity algorithm for clustering analysis within the hierarchical clustering module of SPSS. Findings: When one inputs co-occurrence matrices into the data editor of the SPSS hierarchical clustering module without deactivating the embedded similarity algorithm, the program calculates similarity twice, and thus distorts and overestimates the degree of similarity. Practical implications: We offer the correct syntax to block the similarity algorithm for clustering analysis in the SPSS hierarchical clustering module in the case of co-occurrence matrices. This syntax enables researchers to avoid obtaining incorrect results. Originality/value: This paper presents a method of editing syntax to prevent the default use of a similarity algorithm for SPSS's hierarchical clustering module. This will help researchers, especially those from China, to properly implement the co-occurrence matrix when using SPSS for hierarchical cluster analysis, in order to provide more scientific and rational results.展开更多
A clustering algorithm and a probability statistics method were applied to different phases of a flight to analyze operation time during aircraft ground taxiing and airborne flight.And the clustering pattern,distribut...A clustering algorithm and a probability statistics method were applied to different phases of a flight to analyze operation time during aircraft ground taxiing and airborne flight.And the clustering pattern,distribution characteristics and dynamically changing rules of the two phases were identified.Further,an estimate method was established to measure operation time of flight legs,with creative steps of calculating individual segment separately and then integrating them accordingly.The method can both objectively and dynamically measure operation time,and accurately reflect real situation.It helps to better utilize airport slot resources and provides a strong support for air traffic flow management when scheduling flight plan in strategic and pre-tactic phases.展开更多
Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship....Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship.Design/methodology/approach: In a follow-up to the hard partitioning clustering by Verleysen and Weeren in 2016, we now propose the complementary use of fuzzy cluster analysis, making use of a membership coefficient to study gradual differences between publication styles among authors within a scholarly discipline. The analysis of the probability density function of the membership coefficient allows to assess the distribution of publication styles within and between disciplines.Findings: As an illustration we analyze 1,828 productive authors affiliated in Flanders, Belgium. Whereas a hard partitioning previously identified two broad publication styles, an international one vs. a domestic one, fuzzy analysis now shows gradual differences among authors. Internal diversity also varies across disciplines and can be explained by researchers’ specialization and dissemination strategies.Research limitations: The dataset used is limited to one country for the years 2000–2011; a cognitive classification of authors may yield a different result from the affiliation-based classification used here.Practical implications: Our method is applicable to other bibliometric and research evaluation contexts, especially for the social sciences and humanities in non-Anglophone countries.Originality/value: The method proposed is a novel application of cluster analysis to the field of bibliometrics. Applied to publication patterns at the author level in the social sciences and humanities, for the first time it systematically documents intra-disciplinary diversity.展开更多
Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample ...Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample type is not included in the training dataset.Unsupervised cluster analysis methods(hierarchical clustering analysis,K-means clustering analysis,and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper.The results of hierarchical clustering analysis using four different similarity measuring methods(single linkage,complete linkage,unweighted pair-group average,and weighted pair-group average) are compared.In K-means clustering analysis,four kinds of choosing initial centers methods are applied in our case and their results are compared.The classification results of hierarchical clustering analysis,K-means clustering analysis,and ISODATA are analyzed.The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.展开更多
This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverag...This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverage time, the frequency of coverage, average time per coverage and maximum coverage gap, etc. is required simultaneously. By introducing index normalization method to convert performance indices into dimensionless variables within the range of [0, 1], a design optimization method based on the principal component analysis and cluster analysis is proposed, which consists of index normalization method, principal component analysis, multiple-level cluster analysis and weighted evaluation method. The results of orbit optimization for earth observation satellites show that the optimal orbit can be obtained by using the proposed method. The principal component analysis can reduce the total number of indices with a non-independent relationship to save computing time. Similarly, the multiple-level cluster analysis with parallel computing could save computing time.展开更多
In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of cl...In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model.展开更多
In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tig...In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.展开更多
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward...The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.展开更多
A multi-parameter signal sorting algorithm for interleaved radar pulses in dense emitter environment is presented. The algorithm includes two parts, pulse classification and pulse repetition interval (PRI) analysis....A multi-parameter signal sorting algorithm for interleaved radar pulses in dense emitter environment is presented. The algorithm includes two parts, pulse classification and pulse repetition interval (PRI) analysis. Firstly, we propose the dynamic distance clustering (DDC) for classification. In the clustering algorithm, the multi-dimension features of radar pulse are used for reliable classification. The similarity threshold estimation method in DDC is derived, which contributes to the efficiency of the algorithm. However, DDC has large computation with many signal pulses. Then, in order to sort radar signals in real time, the improved DDC (IDDC) algorithm is proposed. Finally, PRI analysis is adopted to complete the process of sorting. The simulation experiments and hardware implementations show both algorithms are effective.展开更多
With the SPSS and the help of factor method and hierarchical clustered method,journal articles on digital information resources(DIR) from CNKI in the past ten years are analyzed with a co-word analytical method in thi...With the SPSS and the help of factor method and hierarchical clustered method,journal articles on digital information resources(DIR) from CNKI in the past ten years are analyzed with a co-word analytical method in this paper. The hot issues of studies on DIR and the relationship between those subjects are analyzed in this investigation as well.展开更多
The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity i...The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity is exposed in processing brain activation signal which is relatively weak. The time slice analysis method based on OTCA is proposed considering the weakness of the functional magnetic resonance imaging (fMRI) signal of the rat model. By dividing the stimulation period into several time slices and analyzing each slice to detect the activated pixels respectively after the background removal, the sensitivity is significantly improved. The inhibitory response in the hypothalamus after glucose loading is detected successfully with this method in the experiment on rat. Combined with the OTCA method, the time slice analysis method based on OTCA is effective on detecting when, where and which type of response will happen after stimulation, even if the fMRI signal is weak.展开更多
In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect ...In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect effectively through classifying the samples automatically,and influence of X-ray absorption and enhancement by major elements of the samples is reduced.Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.展开更多
In order to quantitatively analyze air traffic operation complexity,multidimensional metrics were selected based on the operational characteristics of traffic flow.The kernel principal component analysis method was ut...In order to quantitatively analyze air traffic operation complexity,multidimensional metrics were selected based on the operational characteristics of traffic flow.The kernel principal component analysis method was utilized to reduce the dimensionality of metrics,therefore to extract crucial information in the metrics.The hierarchical clustering method was used to analyze the complexity of different airspace.Fourteen sectors of Guangzhou Area Control Center were taken as samples.The operation complexity of traffic situation in each sector was calculated based on real flight radar data.Clustering analysis verified the feasibility and rationality of the method,and provided a reference for airspace operation and management.展开更多
This article aims to investigate the current situation of the international almond trade and its consumption patterns. Traditionally, almonds are characterized by their good taste and high quality and regarded as an i...This article aims to investigate the current situation of the international almond trade and its consumption patterns. Traditionally, almonds are characterized by their good taste and high quality and regarded as an ideal source of several natural health nutrients. At present, the United States is the leading almond producer and exporter in the world, accompanied by Germany, Spain and Japan, the biggest almond importing countries. In order to study almond consumption patterns, two indicators were used in our study, the Food Consumer Location Ratio (FCLR) and the Food Consumer Location Relative Ratio (FCLRR). Furthermore, to identify the almond consumption groups, we carried out two cluster analyses based on FCLR and FCLRR values, Finally, an analysis of the factors which have an impact on a country's almond consumption was conducted. It shows that income level, endowment of resources and tradition as well as dietary habits are key factors that help to shape a country's almond consumption pattern.展开更多
Lepidium sativum(commonly known as garden cress) belongs to the family Brassicaceae. It is a fastgrowing erect, annual herbaceous plant. Its seeds possess significant fracture healing, anti-asthmatic, anti-diabetic,...Lepidium sativum(commonly known as garden cress) belongs to the family Brassicaceae. It is a fastgrowing erect, annual herbaceous plant. Its seeds possess significant fracture healing, anti-asthmatic, anti-diabetic,hypoglycemic, nephrocurative and nephroprotective activities. In the present study, we assessed the genetic diversity of various genotypes of L. sativum using inter-simple sequence repeat(ISSR) markers. Out of 41 ISSR primers screened, 32 primers showed significant, clear and reproducible bands. A total of 510 amplified bands were obtained using 32 ISSR primers, out of which 422 bands were polymorphic and 88 bands were monomorphic. The percentage of polymorphism was found to be 82. A total of 35 unique alleles ranging insize from 200 to 2,900 bp were observed.Cluster analysis based on unweighted pair-group method,arithmetic mean divided the 18 genotypes into two main clusters, with the first having only HCS-08 genotype of L.sativum and other having all of the other 17 genotypes. The Jaccard similarity coefficient revealed a broad range32–72 % genetic relatedness among the 18 genotypes.展开更多
Particle induced X-ray Emission(PIXE) was used to analyze the proto-porcelain excavated from Tingziqiao kiln site of Warring States(475–221 BC) in Deqing County of Zhejiang Province, China. It was found that the porc...Particle induced X-ray Emission(PIXE) was used to analyze the proto-porcelain excavated from Tingziqiao kiln site of Warring States(475–221 BC) in Deqing County of Zhejiang Province, China. It was found that the porcelain body and glaze differ from each other in recipes. The porcelain clay of high silicon and low aluminum might be used to make the body of proto-porcelain. Lime and plant or wood ashes might be added into the glaze of the proto-porcelain. Cluster analysis was done to reveal the compositional relationship between the proto-porcelain samples.展开更多
基金supported by the Science and Technology Project of Henan Provincial Science and Technology Department (No.0424490012 )Major Program of Henan Institute of Science and Technology (No.040132)
文摘Five factors expressing greenbelt quality and one factor expressing quantity were adopted for evaluation of the residential greenbelt, and the AHP (Analytical Hierarchy Process) method was used to determine the value of factors. Thirty residential areas were selected as the samples. Two principal components were extracted and their expression was constructed by method of factor anlysis, therefore, quality evaluation of residential greenbelt was obtained. The accuracy of the function and implement quality classification toward the residential greenbelts in Xinxiang City were validated by clustering analysis method. The results showed that the greenbelt quality of fourteen residential areas was higher than the average level, of which eleven were newly-built residential areas. The 30 residential areas were classified into three types according to their greenbelt features and their formation by clustering analysis method. Finally rational proposal basing on aforesaid evaluating results was proposed for construction and renewal of residential greenbelt, upon which directive basis was provided for construction and renewal of residential greenbelt.
文摘Purpose: To discuss the problems arising from hierarchical cluster analysis of co-occurrence matrices in SPSS, and the corresponding solutions. Design/methodology/approach: We design different methods of using the SPSS hierarchical clustering module for co-occurrence matrices in order to compare these methods. We offer the correct syntax to deactivate the similarity algorithm for clustering analysis within the hierarchical clustering module of SPSS. Findings: When one inputs co-occurrence matrices into the data editor of the SPSS hierarchical clustering module without deactivating the embedded similarity algorithm, the program calculates similarity twice, and thus distorts and overestimates the degree of similarity. Practical implications: We offer the correct syntax to block the similarity algorithm for clustering analysis in the SPSS hierarchical clustering module in the case of co-occurrence matrices. This syntax enables researchers to avoid obtaining incorrect results. Originality/value: This paper presents a method of editing syntax to prevent the default use of a similarity algorithm for SPSS's hierarchical clustering module. This will help researchers, especially those from China, to properly implement the co-occurrence matrix when using SPSS for hierarchical cluster analysis, in order to provide more scientific and rational results.
基金supported by the National Natural Science Foundation of China(No.U1333202)
文摘A clustering algorithm and a probability statistics method were applied to different phases of a flight to analyze operation time during aircraft ground taxiing and airborne flight.And the clustering pattern,distribution characteristics and dynamically changing rules of the two phases were identified.Further,an estimate method was established to measure operation time of flight legs,with creative steps of calculating individual segment separately and then integrating them accordingly.The method can both objectively and dynamically measure operation time,and accurately reflect real situation.It helps to better utilize airport slot resources and provides a strong support for air traffic flow management when scheduling flight plan in strategic and pre-tactic phases.
文摘Purpose: To present a method for systematically mapping diversity of publication patterns at the author level in the social sciences and humanities in terms of publication type, publication language and co-authorship.Design/methodology/approach: In a follow-up to the hard partitioning clustering by Verleysen and Weeren in 2016, we now propose the complementary use of fuzzy cluster analysis, making use of a membership coefficient to study gradual differences between publication styles among authors within a scholarly discipline. The analysis of the probability density function of the membership coefficient allows to assess the distribution of publication styles within and between disciplines.Findings: As an illustration we analyze 1,828 productive authors affiliated in Flanders, Belgium. Whereas a hard partitioning previously identified two broad publication styles, an international one vs. a domestic one, fuzzy analysis now shows gradual differences among authors. Internal diversity also varies across disciplines and can be explained by researchers’ specialization and dissemination strategies.Research limitations: The dataset used is limited to one country for the years 2000–2011; a cognitive classification of authors may yield a different result from the affiliation-based classification used here.Practical implications: Our method is applicable to other bibliometric and research evaluation contexts, especially for the social sciences and humanities in non-Anglophone countries.Originality/value: The method proposed is a novel application of cluster analysis to the field of bibliometrics. Applied to publication patterns at the author level in the social sciences and humanities, for the first time it systematically documents intra-disciplinary diversity.
基金supported by Beijing Natural Science Foundation of China(No.4132063)
文摘Supervised learning methods(eg.PLS-DA,SVM,etc.) have been widely used with laser-induced breakdown spectroscopy(LIBS) to classify materials;however,it may induce a low correct classification rate if a test sample type is not included in the training dataset.Unsupervised cluster analysis methods(hierarchical clustering analysis,K-means clustering analysis,and iterative self-organizing data analysis technique) are investigated in plastics classification based on the line intensities of LIBS emission in this paper.The results of hierarchical clustering analysis using four different similarity measuring methods(single linkage,complete linkage,unweighted pair-group average,and weighted pair-group average) are compared.In K-means clustering analysis,four kinds of choosing initial centers methods are applied in our case and their results are compared.The classification results of hierarchical clustering analysis,K-means clustering analysis,and ISODATA are analyzed.The experiment results demonstrated cluster analysis methods can be applied to plastics discrimination with LIBS.
基金Funded by 973 Program of Ministry of National Defense of China(Grant No.613237)
文摘This paper proposes a design optimization method for the multi-objective orbit design of earth observation satellites, for which the optimality of orbit performance indices with different units, such as: total coverage time, the frequency of coverage, average time per coverage and maximum coverage gap, etc. is required simultaneously. By introducing index normalization method to convert performance indices into dimensionless variables within the range of [0, 1], a design optimization method based on the principal component analysis and cluster analysis is proposed, which consists of index normalization method, principal component analysis, multiple-level cluster analysis and weighted evaluation method. The results of orbit optimization for earth observation satellites show that the optimal orbit can be obtained by using the proposed method. The principal component analysis can reduce the total number of indices with a non-independent relationship to save computing time. Similarly, the multiple-level cluster analysis with parallel computing could save computing time.
基金Supported by the 13th 5-Year National Science and Technology Supporting Project(2018YFC2000302)。
文摘In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model.
基金funded by the National Natural Science Foundation of China(42174131)the Strategic Cooperation Technology Projects of CNPC and CUPB(ZLZX2020-03).
文摘In this research,an integrated classification method based on principal component analysis-simulated annealing genetic algorithm-fuzzy cluster means(PCA-SAGA-FCM)was proposed for the unsupervised classification of tight sandstone reservoirs which lack the prior information and core experiments.A variety of evaluation parameters were selected,including lithology characteristic parameters,poro-permeability quality characteristic parameters,engineering quality characteristic parameters,and pore structure characteristic parameters.The PCA was used to reduce the dimension of the evaluation pa-rameters,and the low-dimensional data was used as input.The unsupervised reservoir classification of tight sandstone reservoir was carried out by the SAGA-FCM,the characteristics of reservoir at different categories were analyzed and compared with the lithological profiles.The analysis results of numerical simulation and actual logging data show that:1)compared with FCM algorithm,SAGA-FCM has stronger stability and higher accuracy;2)the proposed method can cluster the reservoir flexibly and effectively according to the degree of membership;3)the results of reservoir integrated classification match well with the lithologic profle,which demonstrates the reliability of the classification method.
基金funded by the State Grid Science and Technology Project“Research on Key Technologies for Prediction and Early Warning of Large-Scale Offshore Wind Power Ramp Events Based on Meteorological Data Enhancement”(4000-202318098A-1-1-ZN).
文摘The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods.
基金supported by the National Defense Pre-research Fund of China under Grant No 41101030401
文摘A multi-parameter signal sorting algorithm for interleaved radar pulses in dense emitter environment is presented. The algorithm includes two parts, pulse classification and pulse repetition interval (PRI) analysis. Firstly, we propose the dynamic distance clustering (DDC) for classification. In the clustering algorithm, the multi-dimension features of radar pulse are used for reliable classification. The similarity threshold estimation method in DDC is derived, which contributes to the efficiency of the algorithm. However, DDC has large computation with many signal pulses. Then, in order to sort radar signals in real time, the improved DDC (IDDC) algorithm is proposed. Finally, PRI analysis is adopted to complete the process of sorting. The simulation experiments and hardware implementations show both algorithms are effective.
基金supported by the Fund for Philosophy and Social Sciences,Ministry of Education of China(Grant No.05JZD00024)
文摘With the SPSS and the help of factor method and hierarchical clustered method,journal articles on digital information resources(DIR) from CNKI in the past ten years are analyzed with a co-word analytical method in this paper. The hot issues of studies on DIR and the relationship between those subjects are analyzed in this investigation as well.
基金the National Natural Science Foundation of China (30370432)
文摘The original temporal clustering analysis (OTCA) is an effective technique for obtaining brain activation maps when the timing and location of the activation are completely unknown, but its deficiency of sensitivity is exposed in processing brain activation signal which is relatively weak. The time slice analysis method based on OTCA is proposed considering the weakness of the functional magnetic resonance imaging (fMRI) signal of the rat model. By dividing the stimulation period into several time slices and analyzing each slice to detect the activated pixels respectively after the background removal, the sensitivity is significantly improved. The inhibitory response in the hypothalamus after glucose loading is detected successfully with this method in the experiment on rat. Combined with the OTCA method, the time slice analysis method based on OTCA is effective on detecting when, where and which type of response will happen after stimulation, even if the fMRI signal is weak.
基金supported by the National Natural Science Foundation of China (No.40574059)the Ministry of Education (No.NCET-04-0904)
文摘In this paper we discuss neural network-based matrix effect correction in energy dispersive X-ray fluorescence (EDXRF) analysis,with detailed algorithm to classify the samples.The method can correct the matrix effect effectively through classifying the samples automatically,and influence of X-ray absorption and enhancement by major elements of the samples is reduced.Experiments for the complex matrix effect correction in EDXRF analysis of samples in Pangang showed improved accuracy of the elemental analysis result.
基金co-supported by the National Natural Science Foundation of China(No.61304190)the Fundamental Research Funds for the Central Universities of China(No.NJ20150030)the Youth Science and Technology Innovation Fund(No.NS2014067)
文摘In order to quantitatively analyze air traffic operation complexity,multidimensional metrics were selected based on the operational characteristics of traffic flow.The kernel principal component analysis method was utilized to reduce the dimensionality of metrics,therefore to extract crucial information in the metrics.The hierarchical clustering method was used to analyze the complexity of different airspace.Fourteen sectors of Guangzhou Area Control Center were taken as samples.The operation complexity of traffic situation in each sector was calculated based on real flight radar data.Clustering analysis verified the feasibility and rationality of the method,and provided a reference for airspace operation and management.
文摘This article aims to investigate the current situation of the international almond trade and its consumption patterns. Traditionally, almonds are characterized by their good taste and high quality and regarded as an ideal source of several natural health nutrients. At present, the United States is the leading almond producer and exporter in the world, accompanied by Germany, Spain and Japan, the biggest almond importing countries. In order to study almond consumption patterns, two indicators were used in our study, the Food Consumer Location Ratio (FCLR) and the Food Consumer Location Relative Ratio (FCLRR). Furthermore, to identify the almond consumption groups, we carried out two cluster analyses based on FCLR and FCLRR values, Finally, an analysis of the factors which have an impact on a country's almond consumption was conducted. It shows that income level, endowment of resources and tradition as well as dietary habits are key factors that help to shape a country's almond consumption pattern.
文摘Lepidium sativum(commonly known as garden cress) belongs to the family Brassicaceae. It is a fastgrowing erect, annual herbaceous plant. Its seeds possess significant fracture healing, anti-asthmatic, anti-diabetic,hypoglycemic, nephrocurative and nephroprotective activities. In the present study, we assessed the genetic diversity of various genotypes of L. sativum using inter-simple sequence repeat(ISSR) markers. Out of 41 ISSR primers screened, 32 primers showed significant, clear and reproducible bands. A total of 510 amplified bands were obtained using 32 ISSR primers, out of which 422 bands were polymorphic and 88 bands were monomorphic. The percentage of polymorphism was found to be 82. A total of 35 unique alleles ranging insize from 200 to 2,900 bp were observed.Cluster analysis based on unweighted pair-group method,arithmetic mean divided the 18 genotypes into two main clusters, with the first having only HCS-08 genotype of L.sativum and other having all of the other 17 genotypes. The Jaccard similarity coefficient revealed a broad range32–72 % genetic relatedness among the 18 genotypes.
基金Supported by the compass special plan from the bureau of cultural relics of China
文摘Particle induced X-ray Emission(PIXE) was used to analyze the proto-porcelain excavated from Tingziqiao kiln site of Warring States(475–221 BC) in Deqing County of Zhejiang Province, China. It was found that the porcelain body and glaze differ from each other in recipes. The porcelain clay of high silicon and low aluminum might be used to make the body of proto-porcelain. Lime and plant or wood ashes might be added into the glaze of the proto-porcelain. Cluster analysis was done to reveal the compositional relationship between the proto-porcelain samples.