期刊文献+
共找到108篇文章
< 1 2 6 >
每页显示 20 50 100
Mixed KPCA结合纹理特征的SVM盐碱土信息提取 被引量:2
1
作者 崔林林 罗毅 +1 位作者 包安明 李春轩 《计算机工程与应用》 CSCD 2012年第27期211-216,共6页
核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于... 核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于该混合核函数的KPCA进行特征提取,将其光谱特征波段和纹理特征相结合用于盐碱土的SVM分类,将分类结果与其他SVM分类进行比较,结果表明:该方法优于其他SVM方法,能有效提取玛纳斯河流域绿洲区的盐碱土专题信息,分类精度是89.000%,kappa系数是0.876。 展开更多
关键词 混合核主成分分析 纹理特征分析 支持向量机 盐碱土
在线阅读 下载PDF
基于数据分解与超参数优化的若干变体支持向量机月降水量预测
2
作者 周正道 黄斌 《节水灌溉》 北大核心 2025年第9期36-43,共8页
为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法... 为提高月降水量时间序列预测精度,改进混合核相关向量机(HRVM)、混合核最小二乘支持向量机(HLSSVM)、混合核支持向量机(HSVM)、相关向量机(RVM)、最小二乘支持向量机(LSSVM)、支持向量机(SVM)泛化性能,基于1~3层小波包分解(WPT1~3)方法和麋鹿优化(EHO)算法,提出WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM月降水量时间序列预测模型,通过云南省大理州2个雨量站月降水量预测实例对18种模型进行验证。首先利用WPT1/WPT2/WPT3对实例月降水量时序数据进行分解处理,划分训练集和验证集;然后基于训练集构建HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数优化适应度函数,利用EHO优化适应度函数获得最优超参数;最后利用最优超参数建立WPT1/WPT2/WPT3-EHO-HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM模型对实例各分量进行预测和重构。结果表明:①18种模型对月降水量均具有较好拟合、预测精度。其中WPT3-EHO-HRVM/HLSSVM/HSVM模型预测的平均绝对误差(MAE)、决定系数(R2)1.70~0.81 mm、0.9996~0.9999,优于其他对比模型,具有最小的预测误差;WPT2-EHO-HRVM/HLSSVM/HSVM模型预测效果较好,精度较高;WPT1-EHO-HRVM/HLSSVM/HSVM模型预测误差相对较大。②在相同分解层数和EHO优化情形下,通过线性组合不同核函数的EHOHRVM/HLSSVM/HSVM模型能更好地适应不同类型的数据分布,显著提升月降水量预测精度。③WPT3分解效果优于WPT2,远优于WPT1,月降水量预测精度随着WPT分解层数的增加而提高。④通过EHO优化HRVM/HLSSVM/HSVM/RVM/LSSVM/SVM超参数,能有效提升模型预测精度和预测效率。 展开更多
关键词 月降水量预测 小波包分解 麋鹿优化算法 混合核函数 支持向量机及其变体 超参数优化
在线阅读 下载PDF
基于改进相关向量机的锂电池剩余使用寿命预测 被引量:7
3
作者 侯小康 袁裕鹏 童亮 《电源技术》 CAS 北大核心 2024年第2期289-298,共10页
精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行... 精确预测锂离子电池剩余使用寿命对于保障设备安全运行十分重要。但电池寿命预测中存在诸如数据噪声和容量再生等不确定性来源,这将导致预测精度大幅下降。为解决这一问题,使用变分模态分解方法对从充电和容量数据中提取的健康因子进行滤波分解,并利用贝叶斯优化方法对相关参数进行优化,提出一种基于多核相关向量机的锂离子电池剩余使用寿命预测模型。利用美国国家航空航天局(NASA)和Oxford电池数据集对所提出的模型进行验证,研究结果表明:所提出的基于变分模态分解和贝叶斯优化的多核相关向量机(VMD-BAYES-HRVM)方法的预测性能不受预测起始点和截止电压的影响,预测结果准确性更高,95%置信区间的跨度更小,证明了所提出方法的有效性。 展开更多
关键词 锂离子电池 剩余使用寿命 变分模态分解 贝叶斯优化 多核相关向量机
在线阅读 下载PDF
基于SVM混合核的不透水面提取及扩张分析 被引量:2
4
作者 冀建任 王竞雪 王丽芹 《测绘通报》 CSCD 北大核心 2024年第3期43-48,共6页
利用支持向量机中单一核函数提取不透水面时存在时间复杂度高和提取精度低的问题。针对该问题,本文在径向基核函数的基础上引入多项式核函数,提出了一种混合核函数的不透水面提取方法。首先,由于属性不同的地物具有相似的光谱信息,在特... 利用支持向量机中单一核函数提取不透水面时存在时间复杂度高和提取精度低的问题。针对该问题,本文在径向基核函数的基础上引入多项式核函数,提出了一种混合核函数的不透水面提取方法。首先,由于属性不同的地物具有相似的光谱信息,在特征提取过程中将光谱信息与图像熵纹理信息相结合,可更加清楚地区分各地物类别。然后,在径向基核函数的基础上引入多项式核,可分别从局部和全局角度获取影像的特征信息,提高不透水面提取精度。最后,在不透水面提取结果基础上进行时空演变分析。本文利用阜新市主城区2009—2021年Landsat影像进行试验。结果表明,光谱与熵纹理相结合方法可改善特征提取效果,提升不透水面提取精度。与单一核函数提取方法对比,利用本文方法提取不透水面精度提高了2.5%,证明了该方法的有效性。 展开更多
关键词 不透水面 纹理特征 支持向量机 混合核函数 时空分析
在线阅读 下载PDF
基于MK-SVM和时序特征分析的月径流预报模型 被引量:1
5
作者 雷庆文 闫磊 +2 位作者 巫晨煜 罗云 谢笑添 《水资源保护》 EI CAS CSCD 北大核心 2024年第6期148-154,共7页
针对传统径流预报方法预报因子不确定性和预报模型复杂性问题,基于月径流时序特征重要性分析选择预报因子,采用混合核函数支持向量机(MK-SVM)模型捕捉径流时序间的非线性关系,提出动态透镜成像反向学习和Lévy飞行等多策略融合的改... 针对传统径流预报方法预报因子不确定性和预报模型复杂性问题,基于月径流时序特征重要性分析选择预报因子,采用混合核函数支持向量机(MK-SVM)模型捕捉径流时序间的非线性关系,提出动态透镜成像反向学习和Lévy飞行等多策略融合的改进灰狼优化算法(IGWO),并构建了径流预报的IGWO-MK-SVM模型。黑河流域莺落峡水文站月径流预报结果表明:IGWO-MK-SVM模型月径流预报结果的纳什效率系数、均方根误差、Kling-Gupta效率系数分别为0.8942、16.9099 m^(3)/s和0.8639;与传统SVM模型相比,IGWO-MK-SVM模型在径流预报中的自适应性有所提升,相较于长短期记忆网络模型和季节性差分自回归移动平均模型,IGWO-MK-SVM模型能更好地预报月径流的真实变化过程。 展开更多
关键词 径流预报 随机森林 径流预报因子 混合核函数支持向量机 改进灰狼优化算法 黑河流域
在线阅读 下载PDF
多核多分类相关向量机在变压器局部放电模式识别中的应用 被引量:25
6
作者 尚海昆 苑津莎 +1 位作者 王瑜 张利伟 《电工技术学报》 EI CSCD 北大核心 2014年第11期221-228,共8页
针对传统单核分类器存在的固有二分类属性及识别信息不够完整的问题,首次提出了一种基于多核多分类相关向量机(MMRVM)的变压器局部放电模式识别新方法。首先选用不同的核函数对4种变压器局部放电信号特征进行映射,解决了不同数据源的问... 针对传统单核分类器存在的固有二分类属性及识别信息不够完整的问题,首次提出了一种基于多核多分类相关向量机(MMRVM)的变压器局部放电模式识别新方法。首先选用不同的核函数对4种变压器局部放电信号特征进行映射,解决了不同数据源的问题;然后利用粒子群优化算法对核参数进行优化选择,有效避免了核参数选择的主观性;最后利用构建出的MMRVM分类模型直接进行多分类,实现放电模式识别。文中以实验室4种典型缺陷的变压器局部放电信号为研究对象,采用传统单核SVM分类器、单核RVM分类器与MMRVM分类器对其进行分析对比。结果表明,MMRVM分类器融合了多种放电特征信息,能够较为全面的描述放电特征,与单核分类器相比具有更高的诊断准确率和更好的实用性。 展开更多
关键词 多核 多分类 相关向量机 变压器 局部放电 模式识别
在线阅读 下载PDF
相关向量机及其在变压器故障诊断中的应用 被引量:22
7
作者 尹金良 朱永利 俞国勤 《电力自动化设备》 EI CSCD 北大核心 2012年第8期130-134,共5页
分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方... 分析并用典型数据分类算例验证相关向量机(RVM)在分类性能方面优于支持向量机(SVM),在此基础上以标准化的变压器主要特征气体含量为输入量,采用二叉树的分类方法建立基于RVM的变压器故障诊断模型。实例分析表明,同基于SVM的故障诊断方法相比,该方法可以取得与其相当甚至更优的故障诊断正确率,相关向量个数明显少于支持向量个数,诊断速度显著提高。 展开更多
关键词 相关向量机 稀疏贝叶斯 支持向量机 核函数 变压器 故障诊断 分类
在线阅读 下载PDF
基于动态多核相关向量机的软测量建模研究 被引量:15
8
作者 吴菁 刘乙奇 +3 位作者 刘坚 黄道平 邱禹 于广平 《化工学报》 EI CAS CSCD 北大核心 2019年第4期1472-1484,共13页
针对污水处理过程中存在的多变量耦合、强非线性以及参数时变等问题,提出基于多核学习相关向量机的软测量建模方法,并采用粒子群算法对多核权重以及核参数进行优化。同时,引入时间差分(time difference)方法改进多核相关向量机的动态特... 针对污水处理过程中存在的多变量耦合、强非线性以及参数时变等问题,提出基于多核学习相关向量机的软测量建模方法,并采用粒子群算法对多核权重以及核参数进行优化。同时,引入时间差分(time difference)方法改进多核相关向量机的动态特性。为了验证所提模型的有效性,通过一仿真案例与单核相关向量机、多层前馈神经网络和基于遗传算法的支持向量机进行对比研究。结果表明,所提模型具有更好的预测效果。最后,对模型的鲁棒性在数据漂移和异常的场景下进行了讨论。 展开更多
关键词 软测量 污水处理 多核 相关向量机 时差建模
在线阅读 下载PDF
基于混合核函数PSO-LSSVM的边坡变形预测 被引量:50
9
作者 郑志成 徐卫亚 +1 位作者 徐飞 刘造保 《岩土力学》 EI CAS CSCD 北大核心 2012年第5期1421-1426,共6页
支持向量机(SVM)的核函数类型和超参数对边坡位移时序预测的精度有重要影响。鉴于局部核函数学习能力强、泛化性能弱,而全局核函数泛化性能强、学习能力弱的矛盾,通过综合两类核函数各自优点构造了基于全局多项式核和高斯核的混合核函数... 支持向量机(SVM)的核函数类型和超参数对边坡位移时序预测的精度有重要影响。鉴于局部核函数学习能力强、泛化性能弱,而全局核函数泛化性能强、学习能力弱的矛盾,通过综合两类核函数各自优点构造了基于全局多项式核和高斯核的混合核函数,并引入粒子群算法(PSO)对最小二乘支持向量机(LSSVM)超参数进行全局寻优,提出了边坡位移时序预测的混合核函数PSO-LSSVM模型。将模型应用于锦屏一级水电站左岸岩石高边坡变形预测分析,并与传统核函数支持向量机预测结果进行对比分析。结果表明,该模型较传统方法在预测精度上有了明显提高,预测结果科学可靠,在边坡位移时序预测中具有良好的实际应用价值。 展开更多
关键词 边坡 边坡变形预测 最小二乘支持向量机 粒子群优化 混合核
在线阅读 下载PDF
优化组合核函数相关向量机电力负荷预测模型 被引量:43
10
作者 段青 赵建国 马艳 《电机与控制学报》 EI CSCD 北大核心 2010年第6期33-38,共6页
在单一核函数相关向量机模型的基础上,构建高斯核函数分别与多项式核函数和张量积线性样条核函数进行线性组合的多种组合核函数相关向量机中期电力负荷预测模型,并利用粒子群优化算法对组合核函数的各参数进行优化选择。以2001年组织的... 在单一核函数相关向量机模型的基础上,构建高斯核函数分别与多项式核函数和张量积线性样条核函数进行线性组合的多种组合核函数相关向量机中期电力负荷预测模型,并利用粒子群优化算法对组合核函数的各参数进行优化选择。以2001年组织的国际电力负荷预测竞赛提供的公开数据为训练和测试样本,分别对多种核函数相关向量机中期电力负荷预测模型进行仿真预测计算。结果显示,虽然各模型都取得了较好的预测精确度,但是基于组合核函数的相关向量机在各项评价指标上都优于基于单一核函数的相关向量机。还利用相关向量机的概率预测优势得到了其他模式识别模型无法得到的预测误差范围。 展开更多
关键词 负荷预测 稀疏贝叶斯学习 相关向量机 组合核函数 粒子群优化
在线阅读 下载PDF
基于增量学习相关向量机的锂离子电池SOC预测方法 被引量:21
11
作者 范兴明 王超 +2 位作者 张鑫 高琳琳 刘华东 《电工技术学报》 EI CSCD 北大核心 2019年第13期2700-2708,共9页
针对锂离子电池荷电状态(SOC)预测精度不高以及在线适应性差的问题,提出一种改进的增量学习相关向量机模型对锂离子电池SOC 进行在线预测。选择锂离子电池电压、充放电电流和表面温度作为模型的输入,SOC 作为模型的输出,构造模型的训练... 针对锂离子电池荷电状态(SOC)预测精度不高以及在线适应性差的问题,提出一种改进的增量学习相关向量机模型对锂离子电池SOC 进行在线预测。选择锂离子电池电压、充放电电流和表面温度作为模型的输入,SOC 作为模型的输出,构造模型的训练集。选用快速序列稀疏贝叶斯学习算法进行训练,并结合增量学习法建立增量学习相关向量机模型进行锂离子电池SOC在线预测方法研究。研究发现,通过自动调整核参数的方法,可以保证有较高的预测精度。算法验证实验表明,核参数可以控制算法的预测精度和计算效率,该算法预测精度高、计算速度快、通用性强,可为锂离子电池SOC 的预测与应用提供参考。 展开更多
关键词 相关向量机 增量学习法 核参数 计算效率 锂离子电池 SOC预测
在线阅读 下载PDF
基于相关向量机的高光谱影像混合像元分解 被引量:17
12
作者 杨国鹏 周欣 +1 位作者 余旭初 陈伟 《电子学报》 EI CAS CSCD 北大核心 2010年第12期2751-2756,共6页
提出了一种利用相关向量机后验概率进行高光谱影像混合像元分解的方法.基于支持向量机后验概率输出的高光谱影像混合像元分解方法中,类别后验概率需要通过带参数的S形函数近似,而且模型需要通过交叉验证获取较好的规则化系数.相关向量... 提出了一种利用相关向量机后验概率进行高光谱影像混合像元分解的方法.基于支持向量机后验概率输出的高光谱影像混合像元分解方法中,类别后验概率需要通过带参数的S形函数近似,而且模型需要通过交叉验证获取较好的规则化系数.相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,核函数不需要满足Mercer条件.本文从分析支持向量机用于高光谱影像混合像元分解存在的不足出发,介绍了稀疏贝叶斯分类模型和模型参数推断,采用了快速序列稀疏贝叶斯学习算法.通过PHI影像的混合像元分解实验分析,表明了基于相关向量机的高光谱影像混合像元分解方法的优势. 展开更多
关键词 高光谱影像 混合像元分解 稀疏贝叶斯模型 相关向量机
在线阅读 下载PDF
一种新的混合核函数支持向量机 被引量:15
13
作者 刘明 周水生 吴慧 《计算机应用》 CSCD 北大核心 2009年第B12期167-168,206,共3页
针对单核函数支持向量机性能的局限性问题,提出将sigmoid核函数与高斯核函数组成一种新的混合核函数支持向量机。高斯核是典型的局部核;sigmoid核在神经网络中被证明具有良好的全局分类性能。新混合核函数结合二者的优点,其支持向量机... 针对单核函数支持向量机性能的局限性问题,提出将sigmoid核函数与高斯核函数组成一种新的混合核函数支持向量机。高斯核是典型的局部核;sigmoid核在神经网络中被证明具有良好的全局分类性能。新混合核函数结合二者的优点,其支持向量机的分类性能优于由单核函数构成的支持向量机,实验结果表明该方法的有效性。 展开更多
关键词 支持向量机 混合核 sigmoid核 高斯核 全局核 局部核
在线阅读 下载PDF
单核和多核相关向量机的比较研究 被引量:18
14
作者 杨柳 张磊 +1 位作者 张少勋 刘建伟 《计算机工程》 CAS CSCD 北大核心 2010年第12期195-197,共3页
针对相关向量机中的核函数选择问题进行研究,对高斯核函数进行改进,提出修正的高斯核函数方法,并比较改进的高斯核函数与普通高斯核函数的特性,证明提出的核函数的优良特性。在对单一核函数改进的基础上,进行多核相关向量机核函数的研究... 针对相关向量机中的核函数选择问题进行研究,对高斯核函数进行改进,提出修正的高斯核函数方法,并比较改进的高斯核函数与普通高斯核函数的特性,证明提出的核函数的优良特性。在对单一核函数改进的基础上,进行多核相关向量机核函数的研究,结合局部性高斯核函数和全局性多项式核函数形成混合核函数,并运用于相关向量机。在不同大小的数据集上对几种核函数进行对比实验,验证修正的高斯核函数及混合核函数的性能。 展开更多
关键词 相关向量机 修正的高斯核函数 多核
在线阅读 下载PDF
一种组合核相关向量机的短时交通流局域预测方法 被引量:26
15
作者 邴其春 龚勃文 +2 位作者 杨兆升 林赐云 商强 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2017年第3期144-149,共6页
为有效提高短时交通流预测的精度,提出一种基于组合核相关向量机模型的短时交通流局域预测方法.首先利用C-C方法实现相空间重构,然后根据Hannan-Quinn准则确定邻近点个数,进而构建基于粒子群优化的组合核相关向量机模型,最后采用上海市... 为有效提高短时交通流预测的精度,提出一种基于组合核相关向量机模型的短时交通流局域预测方法.首先利用C-C方法实现相空间重构,然后根据Hannan-Quinn准则确定邻近点个数,进而构建基于粒子群优化的组合核相关向量机模型,最后采用上海市南北高架快速路的感应线圈实测数据进行实验验证和对比分析.实验结果表明:基于组合核相关向量机模型的短时交通流局域预测方法的预测误差和均等系数均优于对比方法,其中,平均绝对百分比误差比GKF-RVM模型、GKF-SVM模型和加权一阶局域预测模型分别降低了29.2%、47.5%和59.5%,能够进一步提高短时交通流预测的精度. 展开更多
关键词 交通工程 相空间重构 C-C方法 组合核 相关向量机模型 短时交通流预测
在线阅读 下载PDF
基于小波核主成分分析的相关向量机高光谱图像分类 被引量:19
16
作者 赵春晖 张燚 王玉磊 《电子与信息学报》 EI CSCD 北大核心 2012年第8期1905-1910,共6页
相关向量机(RVM)高光谱图像分类是一种较新的高光谱图像分类方法,然而算法本身存在对于高维大样本数据训练时间过长、分类精度不高的问题。针对这些问题,该文提出一种基于新型核主成分分析的RVM分类方法。该方法首先将核函数引入到... 相关向量机(RVM)高光谱图像分类是一种较新的高光谱图像分类方法,然而算法本身存在对于高维大样本数据训练时间过长、分类精度不高的问题。针对这些问题,该文提出一种基于新型核主成分分析的RVM分类方法。该方法首先将核函数引入到主成分分析中,然后应用小波核函数代替传统核函数,利用小波核函数的多分辨率分析特点,进一步提高核主成分分析(KPCA)非线性映射能力,最终将新型核主成分分析算法与相关向量机相结合,对高光谱图像进行分类。仿真实验结果表明,将所提出的方法应用于AVIRIS美国印第安纳州实验田高光谱数据预处理后,类内类间距离比降低20%,方差整体增幅较大,最终将处理后的数据应用于相关向量机的高光谱图像分类中,分类精度提升3%~5%。 展开更多
关键词 高光谱图像分类 相关向量机 核函数主成分分析 小波核函数
在线阅读 下载PDF
基于PSO-RVM算法的发动机故障诊断 被引量:15
17
作者 毕晓君 柳长源 卢迪 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2014年第2期245-249,共5页
针对汽车发动机失火故障问题,提出一种新的智能诊断方法。建立了汽车尾气中各气体的体积分数与失火故障原因的映射关系,对归一化处理的数据进行机器训练,将训练好的相关向量机模型应用于故障分类诊断。算法中的惩罚因子和径向基核函数... 针对汽车发动机失火故障问题,提出一种新的智能诊断方法。建立了汽车尾气中各气体的体积分数与失火故障原因的映射关系,对归一化处理的数据进行机器训练,将训练好的相关向量机模型应用于故障分类诊断。算法中的惩罚因子和径向基核函数参数对分类准确率有着很大的影响,利用粒子群算法对超参数进行了优化。将优化训练后的相关向量机模型与目前较成熟的遗传优化的神经网络及支持向量机方法进行了对比,实验结果表明新方法比传统方法在诊断精度和鲁棒性方面均有一定的提高。 展开更多
关键词 机器学习 相关向量机 核函数 粒子群优化 故障诊断
在线阅读 下载PDF
基于相关向量机的图像阈值技术 被引量:10
18
作者 乔立山 陈松灿 王敏 《计算机研究与发展》 EI CSCD 北大核心 2010年第8期1329-1337,共9页
图像阈值化是一种直观有效的图像分割技术,在图像分析、模式识别及计算机视觉中具有重要应用.传统的阈值化方法通常基于某个特定的优化问题,需要在整个灰度范围内搜索最佳阈值(或阈值组合).最近,基于支持向量回归(SVR)的多阈值分割算法... 图像阈值化是一种直观有效的图像分割技术,在图像分析、模式识别及计算机视觉中具有重要应用.传统的阈值化方法通常基于某个特定的优化问题,需要在整个灰度范围内搜索最佳阈值(或阈值组合).最近,基于支持向量回归(SVR)的多阈值分割算法,直接从支持向量(SV)中获得阈值信息,无需对图像施加任何先验假设,并避免了繁琐的优化过程.然而:1.如何从众多SV中获得可靠的阈值尚待解决(SVR阈值方法的公开问题);2.虽然SVR阈值技术避免了传统多阈值算法可能出现的组合优化问题,但是其中超参数的选择往往需要耗时的交叉验证;3.算法在单峰直方图情形下失效.针对这些问题,并受相关向量机(RVM)方法的启发,提出了一种新的基于RVM的多阈值自动选择技术.由于RVM可以极大地约减"SV"数目,并且无需交叉验证进行参数调整,使得最终阈值的确定更加高效、可靠且异常容易;另外所提算法能有效地处理单峰直方图情形,使阈值分割具有更强的适应性.实验表明基于RVM的阈值技术不仅保留了SVR阈值技术的优点,而且解决了其中的公开问题,并显著地提高了算法的效率和适应能力. 展开更多
关键词 图像分割 自动阈值选择 相关向量机 支持向量回归 稀疏核机
在线阅读 下载PDF
基于量子遗传算法与多输出混合核相关向量机的堆石坝材料参数自适应反演研究 被引量:13
19
作者 马春辉 杨杰 +2 位作者 程琳 李婷 李雅琦 《岩土力学》 EI CAS CSCD 北大核心 2019年第6期2397-2406,共10页
为进一步提高堆石坝材料参数反演模型的计算精度与适用性,建立了基于量子遗传算法(QGA)与多输出混合核相关向量机(MMRVM)的自适应反演模型。通过引入混合核函数,使所构建的MMRVM能够高精度地模拟材料参数与大坝沉降间的复杂非线性关系,... 为进一步提高堆石坝材料参数反演模型的计算精度与适用性,建立了基于量子遗传算法(QGA)与多输出混合核相关向量机(MMRVM)的自适应反演模型。通过引入混合核函数,使所构建的MMRVM能够高精度地模拟材料参数与大坝沉降间的复杂非线性关系,从而代替耗时较长的有限元(FEM)计算。通过利用参数较固化的QGA优化确定MMRVM核参数,使反演模型具有自适应性。以实测沉降数据为依据,充分发挥QGA的全局搜索能力反演筑坝材料本构模型参数。在分析模型所需测点个数与信噪比对计算结果影响的基础上,通过公伯峡堆石坝应用实例证明:QGA-MMRVM可快速、精确地反演堆石坝筑坝材料本构模型参数,模型凭借其自适应性在实际工程中具有良好的应用前景和推广价值。 展开更多
关键词 堆石坝 参数反演 多输出混合核相关向量机 量子遗传算法 自适应
在线阅读 下载PDF
支持向量机在短期负荷预测中的应用概况 被引量:53
20
作者 王奔 冷北雪 +2 位作者 张喜海 单翀皞 从振 《电力系统及其自动化学报》 CSCD 北大核心 2011年第4期115-121,共7页
全面总结了支持向量机(SVM)在短期负荷预测中的应用概况,并从SVM的原理出发,对比人工神经网络方法,从本质上阐述了SVM方法在短期负荷预测中应用的优越性。同时针对SVM在应用中存在的问题,包括数据预处理、核函数构造及选取和参数优化的... 全面总结了支持向量机(SVM)在短期负荷预测中的应用概况,并从SVM的原理出发,对比人工神经网络方法,从本质上阐述了SVM方法在短期负荷预测中应用的优越性。同时针对SVM在应用中存在的问题,包括数据预处理、核函数构造及选取和参数优化的方法,做出分析,并归纳了现行的解决方法。从SVM算法用于负荷预测的机理及提高预测精度和速度的角度,对于一系列SVM的改进方法,全面地进行了归纳,并提出需进一步探讨的关键问题。最后对基于SVM的短期负荷预测所需注意的关键问题做出总结,并提出建议。 展开更多
关键词 支持向量机 人工神经网络 短期负荷预测 数据预处理 核函数 参数优化 混合预测方法
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部