Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this proble...Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.展开更多
With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection abil...With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission.展开更多
We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atom...We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atomic scale.This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects.We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS_(2),enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects.This approach enhances the analysis of structural variations in crystalline materials,marking a notable advancement in the characterization of structures in materials science.展开更多
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me...Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.展开更多
The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segm...The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network.展开更多
Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clo...Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clouds requires segmentation,yet the occlusion effects severely affect the accuracy of automated individual tree segmentation.In this study,we proposed a novel method using ellipsoid directional searching and point compensation algorithms to alleviate occlusion effects.Firstly,region growing and point compensation algorithms are used to determine the location of tree roots.Secondly,the neighbor points are extracted within an ellipsoid neighborhood to mitigate occlusion effects compared with k-nearest neighbor(KNN).Thirdly,neighbor points are uniformly subsampled by the directional searching algorithm based on the Fibonacci principle in multiple spatial directions to reduce memory consumption.Finally,a graph describing connectivity between a point and its neighbors is constructed,and it is utilized to complete individual tree segmentation based on the shortest path algorithm.The proposed method was evaluated on a public TLS dataset comprising six forest plots with three complexity categories in Evo,Finland,and it reached the highest mean accuracy of 77.5%,higher than previous studies on tree detection.We also extracted and validated the tree structure attributes using manual segmentation reference values.The RMSE,RMSE%,bias,and bias%of tree height,crown base height,crown projection area,crown surface area,and crown volume were used to evaluate the segmentation accuracy,respectively.Overall,the proposed method avoids many inherent limitations of current methods and can accurately map canopy structures in occluded complex forest stands.展开更多
Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results ...Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.展开更多
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-...A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results.展开更多
An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depen...An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.展开更多
Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR imag...Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR images often suffer from the low intensity contrast around the boundary of ROIs,large inter-subject variance and large inner-subject variance.To address these issues,many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade.In this paper,multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods,conventional methods for label fusion,datasets that have been used for evaluating the multiatlas methods,as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.展开更多
In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems...In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.展开更多
Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect i...Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.展开更多
Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its ...Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its under-segmentation when applied to segment artificial structure images with unobvious boundaries and narrow regions. Therefore, an improved clustering segmentation algorithm to correct the segmentation results of SLIC is presented in this paper. The allocation of pixels is not only related to its own characteristic, but also to those of its surrounding pixels.Hence, it is appropriate to improve the standard SLIC through the pixels by focusing on boundaries. An improved SLIC method adheres better to the boundaries in the image is proposed, by using the first and second order difference operators as magnified factors. Experimental results demonstrate that the proposed method achieves an excellent boundary adherence for artificial structure images. The application of the proposed method is extended to images with an unobvious boundary in the Berkeley Segmentation Dataset BSDS500. In comparison with SLIC, the boundary adherence is increased obviously.展开更多
A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of eac...A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods.展开更多
In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these...In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.展开更多
Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has r...Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown.展开更多
Region-Growing Algorithms (RGAs) are used to grade the quality of manufactured wood flooring. Traditional RGAs are hampered by prob- lems of long segmentation time and low inspection accuracy caused by neighborhood ...Region-Growing Algorithms (RGAs) are used to grade the quality of manufactured wood flooring. Traditional RGAs are hampered by prob- lems of long segmentation time and low inspection accuracy caused by neighborhood search. We used morphological reconstruction with the R com- ponent to construct a novel flaw segmentation method. We initially designed two template images for low and high thresholds, and these were used for seed optimization and inflation growth, respectively. Then the extraction of the flaw skeleton from the low threshold image was realized by applying the erosion termination rules. The seeds in the flaw skeleton were optimized by the pruning method. The geodesic inflection was applied by the high threshold template to realize rapid growth of the flaw area in the floor plate, and region filling and pruning operations were applied for margin optimization. Experi- ments were conducted on 512×512, 256×256 and 128×128 pixel sizes, re- spectively. The 256×256 pixel size proved superior in time-consumption at 0.06 s with accuracy of 100%. But with the region-growing method the same process took 0.22 s with accuracy of 70%. Compared with RGA, our pro- posed method can realize more accurate segmentation, and the speed and accuracy of segmentation can satisfy the requirements for on-line grading of wood flooring.展开更多
A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image ...A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morpholngical operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images.展开更多
The paper proposes a unified framework to combine the advantages of the fast one-at-a-time approach and the high-performance all-at-once approach to perform Chinese Word Segmentation(CWS) and Part-of-Speech(PoS) taggi...The paper proposes a unified framework to combine the advantages of the fast one-at-a-time approach and the high-performance all-at-once approach to perform Chinese Word Segmentation(CWS) and Part-of-Speech(PoS) tagging.In this framework,the input of the PoS tagger is a candidate set of several CWS results provided by the CWS model.The widely used one-at-a-time approach and all-at-once approach are two extreme cases of the proposed candidate-based approaches.Experiments on Penn Chinese Treebank 5 and Tsinghua Chinese Treebank show that the generalized candidate-based approach outperforms one-at-a-time approach and even the all-at-once approach.The candidate-based approach is also faster than the time-consuming all-at-once approach.The authors compare three different methods based on sentence,words and character-intervals to generate the candidate set.It turns out that the word-based method has the best performance.展开更多
In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to in...In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method.展开更多
文摘Using traditional particle tracking velocimetry based on optical flow for measuring areas with large velocity gradient changes may cause oversmoothing,resulting in significant measurement errors.To address this problem,the traditional particle tracking velocimetry method based on an optical flow was improved.The level set segmentation algorithm was used to obtain the boundary contour of the region with large velocity gradient changes,and the non-uniform flow field was divided into regions according to the boundary contour to obtain sub-regions with uniform velocity distribution.The particle tracking velocimetry method based on optical flow was used to measure the granular flow velocity in each sub-region,thus avoiding the problem of granular flow distribution.The simulation results show that the measurement accuracy of this method is approximately 10%higher than that of traditional methods.The method was applied to a velocity measurement experiment on dense granular flow in silos,and the velocity distribution of the granular flow was obtained,verifying the practicality of the method in granular flow fields.
基金supported in part by the Tianjin Technology Innovation Guidance Special Fund Project under Grant No.21YDTPJC00850in part by the National Natural Science Foundation of China under Grant No.41906161in part by the Natural Science Foundation of Tianjin under Grant No.21JCQNJC00650。
文摘With the development of underwater sonar detection technology,simultaneous localization and mapping(SLAM)approach has attracted much attention in underwater navigation field in recent years.But the weak detection ability of a single vehicle limits the SLAM performance in wide areas.Thereby,cooperative SLAM using multiple vehicles has become an important research direction.The key factor of cooperative SLAM is timely and efficient sonar image transmission among underwater vehicles.However,the limited bandwidth of underwater acoustic channels contradicts a large amount of sonar image data.It is essential to compress the images before transmission.Recently,deep neural networks have great value in image compression by virtue of the powerful learning ability of neural networks,but the existing sonar image compression methods based on neural network usually focus on the pixel-level information without the semantic-level information.In this paper,we propose a novel underwater acoustic transmission scheme called UAT-SSIC that includes semantic segmentation-based sonar image compression(SSIC)framework and the joint source-channel codec,to improve the accuracy of the semantic information of the reconstructed sonar image at the receiver.The SSIC framework consists of Auto-Encoder structure-based sonar image compression network,which is measured by a semantic segmentation network's residual.Considering that sonar images have the characteristics of blurred target edges,the semantic segmentation network used a special dilated convolution neural network(DiCNN)to enhance segmentation accuracy by expanding the range of receptive fields.The joint source-channel codec with unequal error protection is proposed that adjusts the power level of the transmitted data,which deal with sonar image transmission error caused by the serious underwater acoustic channel.Experiment results demonstrate that our method preserves more semantic information,with advantages over existing methods at the same compression ratio.It also improves the error tolerance and packet loss resistance of transmission.
基金funding support from the National Research Foundation (Competitive Research Program grant number NRF-CRP16-2015-05)the National University of Singapore Early Career Research Award+1 种基金supported by the Eric and Wendy Schmidt AI in Science Postdoctoral Fellowshipa Schmidt Sciences program。
文摘We present a method using Zernike moments for quantifying rotational and reflectional symmetries in scanning transmission electron microscopy(STEM)images,aimed at improving structural analysis of materials at the atomic scale.This technique is effective against common imaging noises and is potentially suited for low-dose imaging and identifying quantum defects.We showcase its utility in the unsupervised segmentation of polytypes in a twisted bilayer TaS_(2),enabling accurate differentiation of structural phases and monitoring transitions caused by electron beam effects.This approach enhances the analysis of structural variations in crystalline materials,marking a notable advancement in the characterization of structures in materials science.
基金supported by the National Natural Science Foundation of China (Project No.72301293)。
文摘Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.
基金Beijing Natural Science Foundation(No.IS23112)Beijing Institute of Technology Research Fund Program for Young Scholars(No.6120220236)。
文摘The intensive application of deep learning in medical image processing has facilitated the advancement of automatic retinal vessel segmentation research.To overcome the limitation that traditional U-shaped vessel segmentation networks fail to extract features in fundus image sufficiently,we propose a novel network(DSeU-net)based on deformable convolution and squeeze excitation residual module.The deformable convolution is utilized to dynamically adjust the receptive field for the feature extraction of retinal vessel.And the squeeze excitation residual module is used to scale the weights of the low-level features so that the network learns the complex relationships of the different feature layers efficiently.We validate the DSeU-net on three public retinal vessel segmentation datasets including DRIVE,CHASEDB1,and STARE,and the experimental results demonstrate the satisfactory segmentation performance of the network.
基金supported by the National Natural Science Foundation of China(Nos.32171789,32211530031,12411530088)the National Key Research and Development Program of China(No.2023YFF1303901)+2 种基金the Joint Open Funded Project of State Key Laboratory of Geo-Information Engineering and Key Laboratory of the Ministry of Natural Resources for Surveying and Mapping Science and Geo-spatial Information Technology(2022-02-02)Background Resources Survey in Shennongjia National Park(SNJNP2022001)the Open Project Fund of Hubei Provincial Key Laboratory for Conservation Biology of Shennongjia Snub-nosed Monkeys(SNJGKL2022001).
文摘Terrestrial laser scanning(TLS)accurately captures tree structural information and provides prerequisites for treescale estimations of forest biophysical attributes.Quantifying tree-scale attributes from TLS point clouds requires segmentation,yet the occlusion effects severely affect the accuracy of automated individual tree segmentation.In this study,we proposed a novel method using ellipsoid directional searching and point compensation algorithms to alleviate occlusion effects.Firstly,region growing and point compensation algorithms are used to determine the location of tree roots.Secondly,the neighbor points are extracted within an ellipsoid neighborhood to mitigate occlusion effects compared with k-nearest neighbor(KNN).Thirdly,neighbor points are uniformly subsampled by the directional searching algorithm based on the Fibonacci principle in multiple spatial directions to reduce memory consumption.Finally,a graph describing connectivity between a point and its neighbors is constructed,and it is utilized to complete individual tree segmentation based on the shortest path algorithm.The proposed method was evaluated on a public TLS dataset comprising six forest plots with three complexity categories in Evo,Finland,and it reached the highest mean accuracy of 77.5%,higher than previous studies on tree detection.We also extracted and validated the tree structure attributes using manual segmentation reference values.The RMSE,RMSE%,bias,and bias%of tree height,crown base height,crown projection area,crown surface area,and crown volume were used to evaluate the segmentation accuracy,respectively.Overall,the proposed method avoids many inherent limitations of current methods and can accurately map canopy structures in occluded complex forest stands.
文摘Aim Researching the optimal thieshold of image segmentation. M^ethods An adaptiveimages segmentation method based on the entropy of histogram of gray-level picture and genetic. algorithm (GA) was presental. Results In our approach, the segmentation problem was formulated as an optimization problem and the fitness of GA which can efficiently search the segmentation parameter space was regarded as the quality criterion. Conclusion The methodcan be adapted for optimal behold segmentation.
基金Supported by the National Natural Science Foundation of China(60505004,60773061)~~
文摘A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results.
文摘An approach for color image segmentation is proposed based on the contributions of color features to segmentation rather than the choice of a particular color space. The determination of effective color features depends on the analysis of various color features from each tested color image via the designed feature encoding. It is different from the pervious methods where self organized feature map (SOFM) is used for constructing the feature encoding so that the feature encoding can self organize the effective features for different color images. Fuzzy clustering is applied for the final segmentation when the well suited color features and the initial parameter are available. The proposed method has been applied in segmenting different types of color images and the experimental results show that it outperforms the classical clustering method. The study shows that the feature encoding approach offers great promise in automating and optimizing the segmentation of color images.
基金Supported by the National Natural Science Foundation of China(Nos.61876082,61861130366,61703301)the Jiangsu Provincial 333 High-level Talent Cultivation Projects~~
文摘Brain region-of-interesting (ROI) segmentation is an important prerequisite step for many computeraid brain disease analyses.However,the human brain has the complicated anatomical structure.Meanwhile,the brain MR images often suffer from the low intensity contrast around the boundary of ROIs,large inter-subject variance and large inner-subject variance.To address these issues,many multi-atlas based segmentation methods are proposed for brain ROI segmentation in the last decade.In this paper,multi-atlas based methods for brain MR image segmentation were reviewed regarding several registration toolboxes which are widely used in the multi-atlas methods,conventional methods for label fusion,datasets that have been used for evaluating the multiatlas methods,as well as the applications of multi-atlas based segmentation in clinical researches.We propose that incorporating the anatomical prior into the end-to-end deep learning architectures for brain ROI segmentation is an important direction in the future.
基金supported by National Forestry Public Welfare Industry Scientific Research Special Subsidy Project(201304502)
文摘In this study,an image binarization optimization algorithm,based on local threshold algorithms,is proposed because global and traditional local threshold segmentation algorithms cannot effectively address the problems of nonuniform backgrounds of wood defect images.The proposed algorithm calculates the threshold by the mean,standard deviation and the extreme value of the window.The results indicate that this modified algorithm enhances the image segmentation for wood defect images on a complex background,which is much superior to the global threshold algorithm and the Bernsen algorithm,and slightly better than the Niblack algorithm and Sauvola algorithm.Compared with similar models,the algorithm proposed in this paper has higher segmentation accuracy,as high as 92.6%for wood defect images with a complex background.
基金supported by the Fund of Forestry 948project(2015-4-52)the Fundamental Research Funds for the Central Universities(2572017DB05)the Natural Science Foundation of Heilongjiang Province(C2017005)
文摘Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.
基金Supported by Defense Industrial Technology Development Program(JCKY2017602C016)
文摘Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its under-segmentation when applied to segment artificial structure images with unobvious boundaries and narrow regions. Therefore, an improved clustering segmentation algorithm to correct the segmentation results of SLIC is presented in this paper. The allocation of pixels is not only related to its own characteristic, but also to those of its surrounding pixels.Hence, it is appropriate to improve the standard SLIC through the pixels by focusing on boundaries. An improved SLIC method adheres better to the boundaries in the image is proposed, by using the first and second order difference operators as magnified factors. Experimental results demonstrate that the proposed method achieves an excellent boundary adherence for artificial structure images. The application of the proposed method is extended to images with an unobvious boundary in the Berkeley Segmentation Dataset BSDS500. In comparison with SLIC, the boundary adherence is increased obviously.
文摘A fast and effective fuzzy clustering algorithm is proposed. The algorithm splits an image into n × n blocks, and uses block variance to judge whether the block region is homogeneous. Mean and center pixel of each homogeneous block are extracted for feature. Each inhomogeneous block is split into separate pixels and the mean of neighboring pixels within a window around each pixel and pixel value are extracted for feature. Then cluster of homogeneous blocks and cluster of separate pixels from inhomogeneous blocks are carried out respectively according to different membership functions. In fuzzy clustering stage, the center pixel and center number of the initial clustering are calculated based on histogram by using mean feature. Then different membership functions according to comparative result of block variance are computed. Finally, modified fuzzy c-means with spatial information to complete image segmentation axe used. Experimental results show that the proposed method can achieve better segmental results and has shorter executive time than many well-known methods.
基金supported by the National Basic Research Program of China (Grant No. 2011CB707701)the National Natural Science Foundation of China (Grant No. 60873124)+2 种基金the Joint Research Foundation of Beijing Education Committee (GrantNo. JD100010607)the International Science and Technology Supporting Programme (Grant No. 2008BAH26B00)the Zhejiang Service Robot Key Laboratory (Grant No. 2008E10004)
文摘In this paper we first determine three phases of cell images: background, cytoplasm and nucleolus according to the general physical characteristics of cell images, and then develop a variational model, based on these characteristics, to segment nucleolus and cytoplasm from their relatively complicated backgrounds. In the meantime, the preprocessing obtained information of cell images using the OTSU algorithm is used to initialize the level set function in the model, which can speed up the segmentation and present satisfactory results in cell image processing.
基金Natural Science Foundation of Fujian Province(No.2019J05026)in part by the Education Scientific Research Project for Young Teachers of Fujian Province(No.JT180053).
文摘Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely studied.The former has recently researched on autoencoder model used for image denoising,but the existed models are too complicated to be suitable for real-time detection of USV.In this paper,we proposed a lightweight autoencoder combined with inception module for maritime image denoising in different noisy environments and explore the effect of different inception modules on the denoising performance.Furthermore,we completed the semantic segmentation task for maritime images taken by USV utilizing the pretrained U-Net model with tuning,and compared them with original U-Net model based on different backbone.Subsequently,we compared the semantic segmentation of noised and denoised maritime images respectively to explore the effect of image noise on semantic segmentation performance.Case studies are provided to prove the feasibility of our proposed denoising and segmentation method.Finally,a simple integrated communication system combining image denoising and segmentation for USV is shown.
基金financially supported by the Fundamental Research Funds for the Central Universities(DL12EB04-03),(DL13CB02)the Natural Science Foundation of Heilongjiang Province(LC2011C25)
文摘Region-Growing Algorithms (RGAs) are used to grade the quality of manufactured wood flooring. Traditional RGAs are hampered by prob- lems of long segmentation time and low inspection accuracy caused by neighborhood search. We used morphological reconstruction with the R com- ponent to construct a novel flaw segmentation method. We initially designed two template images for low and high thresholds, and these were used for seed optimization and inflation growth, respectively. Then the extraction of the flaw skeleton from the low threshold image was realized by applying the erosion termination rules. The seeds in the flaw skeleton were optimized by the pruning method. The geodesic inflection was applied by the high threshold template to realize rapid growth of the flaw area in the floor plate, and region filling and pruning operations were applied for margin optimization. Experi- ments were conducted on 512×512, 256×256 and 128×128 pixel sizes, re- spectively. The 256×256 pixel size proved superior in time-consumption at 0.06 s with accuracy of 100%. But with the region-growing method the same process took 0.22 s with accuracy of 70%. Compared with RGA, our pro- posed method can realize more accurate segmentation, and the speed and accuracy of segmentation can satisfy the requirements for on-line grading of wood flooring.
文摘A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morpholngical operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images.
基金supported by the National Natural Science Foundation of China under GrantNo.60873174
文摘The paper proposes a unified framework to combine the advantages of the fast one-at-a-time approach and the high-performance all-at-once approach to perform Chinese Word Segmentation(CWS) and Part-of-Speech(PoS) tagging.In this framework,the input of the PoS tagger is a candidate set of several CWS results provided by the CWS model.The widely used one-at-a-time approach and all-at-once approach are two extreme cases of the proposed candidate-based approaches.Experiments on Penn Chinese Treebank 5 and Tsinghua Chinese Treebank show that the generalized candidate-based approach outperforms one-at-a-time approach and even the all-at-once approach.The candidate-based approach is also faster than the time-consuming all-at-once approach.The authors compare three different methods based on sentence,words and character-intervals to generate the candidate set.It turns out that the word-based method has the best performance.
基金Project supported by the National Natural Science Foundation of China (Grant No.11101454)the Educational Commission Foundation of Chongqing City,China (Grant No.KJ130626)the Program of Innovation Team Project in University of Chongqing City,China (Grant No.KJTD201308)
文摘In this paper, radial basis functions are used to obtain the solution of evolution equations which appear in variational level set method based image segmentation. In this method, radial basis functions are used to interpolate the implicit level set function of the evolution equation with a high level of accuracy and smoothness. Then, the original initial value problem is discretized into an interpolation problem. Accordingly, the evolution equation is converted into a set of coupled ordinary differential equations, and a smooth evolution can be retained. Compared with finite difference scheme based level set approaches, the complex and costly re-initialization procedure is unnecessary. Numerical examples are also given to show the efficiency of the method.