期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
无磁轭轴向磁通风力发电机多目标偏好优化设计 被引量:4
1
作者 曹永娟 顾迪 +3 位作者 冯亮亮 张伟 李康 毛瑞 《电机与控制学报》 EI CSCD 北大核心 2023年第9期148-156,共9页
为了实现小型风力发电机的高性能及微风启动,将3D打印赛钢塑料与混合Halbach阵列、模块化弹性定子铁心结合,提出一种无磁轭模块化轴向磁通风力发电机。根据设计要求,分析不同材料的重量,确定了电机的初步方案。在目标约束的基础上,以感... 为了实现小型风力发电机的高性能及微风启动,将3D打印赛钢塑料与混合Halbach阵列、模块化弹性定子铁心结合,提出一种无磁轭模块化轴向磁通风力发电机。根据设计要求,分析不同材料的重量,确定了电机的初步方案。在目标约束的基础上,以感应电动势波形畸变率为主要偏好,感应电动势、齿槽转矩为次要偏好进行优化设计。采用了改进的多目标遗传优化算法及响应面法对电机进行了多目标偏好优化,并与无偏好的优化结果对比,体现了偏好优化的优势。最后,通过有限元仿真及样机实验验证该电机性能。 展开更多
关键词 轴向磁通发电机设计 3D打印赛钢塑料 模块化弹性定子铁心 多目标偏好优化 响应面法 多目标遗传优化算法
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
2
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部