期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
3
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
4
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
5
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
6
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
7
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
SMOGN过采样下导水裂隙带高度的MPSO-BP预测模型 被引量:2
8
作者 刘奇 梁智昊 訾建潇 《煤田地质与勘探》 EI CAS CSCD 北大核心 2024年第11期72-85,共14页
【目的】导水裂隙带高度是顶板(涌)突水、地下水资源流失的重要影响因素之一,是矿井防治水研究的重点。【方法】为了准确地预测煤层顶板导水裂隙带高度,选取开采深度、采高、煤层倾角、工作面斜长、硬岩岩性比例系数和开采方法作为导水... 【目的】导水裂隙带高度是顶板(涌)突水、地下水资源流失的重要影响因素之一,是矿井防治水研究的重点。【方法】为了准确地预测煤层顶板导水裂隙带高度,选取开采深度、采高、煤层倾角、工作面斜长、硬岩岩性比例系数和开采方法作为导水裂隙带高度的主要影响因素,搜集200例导水裂隙带高度实测样本作为模型数据集。首先,采用自适应高斯噪声过采样方法(synthetic minority over-sampling technique for regression with Gaussian noise,SMOGN)对原始数据集进行过采样,结合8折交叉验证,将平均绝对误差(EMA)、均方根误差(ERMS)和决定系数(R2)作为回归模型评价指标,确定最优的BP神经网络结构,然后采用变异粒子群优化算法(mutation particle swarm optimization,MPSO),对神经网络的初始权值和阈值进行优化,最后将优化后的预测模型进行工程现场应用。【结果和结论】结果表明:该数据集下,BP神经网络采用Huber loss和Adam一阶优化算法,训练速度和稳定性均得到提升,最优激活函数为Tanh,最优隐藏层节点数为12。当MPSO种群数量为50时,模型性能最好,经过SMOGN过采样和MPSO超参数优化,最终训练集的EMA为0.163,ERMS为0.216,R2为0.948,验证集的EMA为0.260,ERMS为0.341,R2为0.901。在现场应用中模型预测的相对误差均在9%以下。结果表明结合SMOGN技术和MPSO超参数优化技术,显著提高了模型的稳定性和泛化性能,改善了样本分布特征,提高了样本利用效率和模型预测效果,对导水裂隙带高度模型的训练和预测具有重要的借鉴意义。 展开更多
关键词 煤矿防治水 回归过采样 导水裂隙带 高度预测 变异粒子群算法 模型优化
在线阅读 下载PDF
基于MPSO-WLS-SVM的矿井瓦斯涌出量预测模型研究 被引量:32
9
作者 付华 谢森 +1 位作者 徐耀松 陈子春 《中国安全科学学报》 CAS CSCD 北大核心 2013年第5期56-61,共6页
为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的粒子群算法(MPSO)优化的加权最小二乘支持向量机(WLS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对WLS-SVM的正则化参数C和高斯核参数σ寻优,建立基于MPSO优化的WL... 为有效预防瓦斯灾害,以预测矿井瓦斯涌出量为研究目的,提出经改进的粒子群算法(MPSO)优化的加权最小二乘支持向量机(WLS-SVM),并用其预测非线性动态瓦斯涌出量。算法通过对WLS-SVM的正则化参数C和高斯核参数σ寻优,建立基于MPSO优化的WLS-SVM的瓦斯涌出量预测模型,并利用某矿井监测到的各项历史数据进行实例分析。试验结果表明:该预测模型预测的最大相对误差为5.99%,最小相对误差为0.43%,平均相对误差为2.95%,较其他预测模型有更强的泛化能力和更高的预测精度。 展开更多
关键词 加权最小二乘支持向量机(WLS-SVM) 瓦斯涌出量 预测 改进的粒子群(mpso)算法
在线阅读 下载PDF
基于MPSO-CWLS-SVM的瓦斯涌出量预测 被引量:12
10
作者 付华 王馨蕊 +4 位作者 杨本臣 王志军 屠乃威 王雨虹 徐耀松 《传感技术学报》 CAS CSCD 北大核心 2014年第11期1568-1572,共5页
针对瓦斯涌出量受多因素影响,传统的预测方法难以建立准确的数学模型,导致预测精度低这一问题。提出一种经改进的粒子群算法(MPSO)优化的基于柯西分布加权的最小二乘支持向量机(CWLS-SVM)算法来预测非线性动态瓦斯涌出量。柯西分布加权... 针对瓦斯涌出量受多因素影响,传统的预测方法难以建立准确的数学模型,导致预测精度低这一问题。提出一种经改进的粒子群算法(MPSO)优化的基于柯西分布加权的最小二乘支持向量机(CWLS-SVM)算法来预测非线性动态瓦斯涌出量。柯西分布加权的最小二乘支持向量机根据预测误差的统计特性,确定加权规则参数,以达到赋予训练样本不同权值的目的。并用MPSO算法对CWLS-SVM模型的正则化参数λ和高斯核参数σ寻优。利用无线传感器网络采集到的各项历史数据进行实例分析。结果表明,该算法有效的提高了瓦斯涌出量的预测精度,降低了预测误差,为煤矿瓦斯防治提供理论支持。 展开更多
关键词 无线传感网络 瓦斯涌出量预测 加权最小二乘支持向量机(WLS-SVM) 柯西分布函数 改进的粒子群算法(mpso)算法
在线阅读 下载PDF
MPSO-RBF优化策略在锅炉过热系统辨识中的仿真研究 被引量:10
11
作者 肖本贤 王晓伟 刘一福 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第6期1382-1385,1389,共5页
提出了基于改进PSO算法的RBF神经网络混合优化(MPSO-RBF)方法,并将其应用到非线性系统的辨识中。该方法将改进PSO算法的全局搜索能力和RBF神经网络局部优化的高效性相融合,克服了普通PSO算法收敛的不稳定性和RBF网络易陷入局部极小值的... 提出了基于改进PSO算法的RBF神经网络混合优化(MPSO-RBF)方法,并将其应用到非线性系统的辨识中。该方法将改进PSO算法的全局搜索能力和RBF神经网络局部优化的高效性相融合,克服了普通PSO算法收敛的不稳定性和RBF网络易陷入局部极小值的缺点。经典型非线性系统仿真试验,并与GA-RBF和RBF辨识效果进行了对比,结果表明基于MPSO-RBF的混合优化方法较GA-RBF和RBF优化速度快、逼近性能好,可以达到更优的辨识精度。最后,通过对火电厂的过热汽温动态特性的辨识实例,同样证明了MPSO-RBF方法具有更好的性能指标。 展开更多
关键词 改进PSO算法 RBF神经网络 非线性系统辨识 混合优化策略 过热汽温模型
在线阅读 下载PDF
基于多领导粒子策略的DMPSO算法在冷轧液压APC系统中的应用 被引量:1
12
作者 魏立新 王利平 +2 位作者 徐德树 林鹏 杨景明 《中国机械工程》 EI CAS CSCD 北大核心 2015年第23期3125-3129,共5页
冷轧液压伺服位置自动控制(APC)系统中,系统参数会随着运行时间发生改变,针对系统这一特性,提出了一种基于改进动态多目标粒子群(DMPSO)算法的PID控制器参数整定策略。当系统发生变化时,该策略利用动态多目标粒子群算法的寻优能力和对... 冷轧液压伺服位置自动控制(APC)系统中,系统参数会随着运行时间发生改变,针对系统这一特性,提出了一种基于改进动态多目标粒子群(DMPSO)算法的PID控制器参数整定策略。当系统发生变化时,该策略利用动态多目标粒子群算法的寻优能力和对环境变化的适应能力重新对PID参数进行整定和寻优。同时,针对算法存在的易于陷入局部最优和收敛速度较慢等缺陷,提出了一种基于多领导粒子策略的动态多目标粒子群算法。仿真结果表明:该控制系统对环境变化跟踪快,超调量小,调整时间短,性能明显优于传统PID控制。 展开更多
关键词 多领导粒子 动态多目标粒子群 APC 系统 PID 控制 dynamic multi-objective particle swarm optimization(Dmpso)
在线阅读 下载PDF
基于KPCA-MPSO-ELM的矿井突水水源判别模型 被引量:18
13
作者 毛志勇 黄春娟 +1 位作者 路世昌 韩榕月 《中国安全科学学报》 CAS CSCD 北大核心 2018年第8期111-116,共6页
为准确判别矿井突水水源并有效预防突水事故,提出一种基于核主成分分析-改进粒子群算法-极限学习机(KPCA-MPSO-ELM)的矿井突水水源判别模型。利用核主成分分析(KPCA)法对原始数据进行属性约减,通过改进粒子群算法(MPSO)优化极限... 为准确判别矿井突水水源并有效预防突水事故,提出一种基于核主成分分析-改进粒子群算法-极限学习机(KPCA-MPSO-ELM)的矿井突水水源判别模型。利用核主成分分析(KPCA)法对原始数据进行属性约减,通过改进粒子群算法(MPSO)优化极限学习机(ELM)的初始权值和阈值,建立KPCA-MPSO-ELM模型;在综合考虑矿井各含水层的水化学特征的基础上,选取Ca2+、Mg2+、K++Na+、HCO3-、SO42-、Cl-等的浓度和总硬度作为矿井突水水源的主要判别依据;以新庄孜矿的45组实测数据作为样本进行实例分析,其中33组数据作为训练数据训练模型,另外12组数据作为预测样本,用该模型进行预测,并将其判别结果与MPSO-ELM、KPCA-PSO-ELM模型的判别结果进行对比。结果表明:KPCA方法能减少指标数据间的信息重叠;通过MPSO优化ELM参数,可提高算法的整体搜索性能和收敛速度; KPCA-MPSO-ELM模型的预测精度高于MPSO-ELM、KPCA-PSOELM等2个模型。 展开更多
关键词 矿井突水 水源判别 核主成分分析(KPCA) 改进粒子群算法(mpso) 极限学习机(ELM)
在线阅读 下载PDF
电阻抗断层成像的MPSO-MNR算法研究 被引量:3
14
作者 张辉 李颖 +1 位作者 王西明 张小娣 《计算机工程与应用》 CSCD 2013年第9期29-32,共4页
基于修正粒子群算法(MPSO)和修正的牛顿-拉夫逊(MNR)算法的优点和局限,提出MPSO-MNR算法,通过对研究的平面圆形求解域采用有限元法进行剖分,电流注入采用三角电流法的园域内单个、两个仿真目标采用该算法进行电阻抗断层静态重构。采用... 基于修正粒子群算法(MPSO)和修正的牛顿-拉夫逊(MNR)算法的优点和局限,提出MPSO-MNR算法,通过对研究的平面圆形求解域采用有限元法进行剖分,电流注入采用三角电流法的园域内单个、两个仿真目标采用该算法进行电阻抗断层静态重构。采用定义的适应值函数和误差总和作为评价重构质量的物理量。数值仿真结果表明,在一定迭代次数内,提出的MPSO-MNR算法对求解域内目标位置定位准确,能够较准确反映场域内电阻率的分布。 展开更多
关键词 修正的粒子群算法 电阻抗断层成像 修正的牛顿-拉夫逊算法
在线阅读 下载PDF
改进粒子群优化(MPSO)算法在动态配水中的应用 被引量:6
15
作者 罗志平 周新志 王标 《中国农村水利水电》 北大核心 2007年第6期43-45,48,共4页
基于在水资源不充足的情况下,对都江堰灌区六大干渠水资源的合理分配,使农业效益达到最大。首先建立灌区优化配水模型,并将粒子群优化算法(PSO)及其改进的算法应用于该模型。分别对标准PSO、两种改进PSO(MPSO)算法与遗传算法进行仿真对... 基于在水资源不充足的情况下,对都江堰灌区六大干渠水资源的合理分配,使农业效益达到最大。首先建立灌区优化配水模型,并将粒子群优化算法(PSO)及其改进的算法应用于该模型。分别对标准PSO、两种改进PSO(MPSO)算法与遗传算法进行仿真对比,结果显示采用PSO算法及其MPSO在农业经济效益上可获得更好的寻优效果,提高了水资源的利用率。 展开更多
关键词 都江堰灌区 农业效益 配水模型 粒子群优化算法(PSO) 改进PSO(mpso)
在线阅读 下载PDF
基于MPSO-DV-Hop的无线传感器节点定位 被引量:6
16
作者 周天绮 姜凤茹 《计算机工程与应用》 CSCD 2013年第23期52-55,共4页
节点定位技术是无线传感器网络的关键技术,为减小DV-Hop算法的节点定位误差,提出一种多子群粒子群(MPSO)算法优化DV-Hop的节点定位算法(MPSO-DV-Hop)。通过设置门限值修正节点间的跳数,提高了跳段距离估算精度,DV-Hop的第3阶段引入MPSO... 节点定位技术是无线传感器网络的关键技术,为减小DV-Hop算法的节点定位误差,提出一种多子群粒子群(MPSO)算法优化DV-Hop的节点定位算法(MPSO-DV-Hop)。通过设置门限值修正节点间的跳数,提高了跳段距离估算精度,DV-Hop的第3阶段引入MPSO算法,对节点定位误差进行校正,通过引入多子群加快算法收敛速度,提高DV-Hop算法的节点定位精度,在MATLAB2008平台上对算法仿真分析。结果表明,MPSO-DV-Hop算法在不增加成本情况下,提高了传感器的节点定位精度,具有较高的应用价值。 展开更多
关键词 无线传感网络 节点定位 多子群粒子群优化算法 DV-HOP算法
在线阅读 下载PDF
基于混沌优化MPSO的移动机器人FastSLAM算法研究 被引量:1
17
作者 朱奇光 夏翠萍 +1 位作者 陈卫东 陈颖 《中国机械工程》 EI CAS CSCD 北大核心 2015年第5期587-591,597,共6页
针对移动机器人快速同时定位和地图创建(FastSLAM)中粒子退化问题,提出一种基于混沌优化的中值导向粒子群优化(MPSO)算法。该算法在粒子估计过程中引入观测信息,调整粒子的提议分布,提高位置预测的准测性。混沌优化MPSO算法采用两步优... 针对移动机器人快速同时定位和地图创建(FastSLAM)中粒子退化问题,提出一种基于混沌优化的中值导向粒子群优化(MPSO)算法。该算法在粒子估计过程中引入观测信息,调整粒子的提议分布,提高位置预测的准测性。混沌优化MPSO算法采用两步优化策略,首先通过中值导向加速度来改进粒子的进化速度,有效地克服粒子退化问题,改善算法的收敛性;然后针对粒子耗尽问题,在MPSO优化算法中引入混沌搜索算法来寻找全局最优位置,驱散聚集在局部最优的粒子群,使其向全局最优位置靠近,扩大解空间的范围,从而保持种群的多样性。仿真和实时数据证明了该方法正确、可行。 展开更多
关键词 快速同时定位和地图创建 提议分布 中值导向粒子群优化 中值导向加速度 混沌
在线阅读 下载PDF
MPSO-GEP方法在边坡可靠度计算中的应用 被引量:1
18
作者 贺子光 赵法锁 +2 位作者 段钊 郝飓 党亚倩 《防灾减灾工程学报》 CSCD 北大核心 2015年第4期425-432,共8页
提出了采用基因表达式编程(Gene Expression Programming,GEP)和混合粒子群相结合计算边坡可靠度的新方法。该方法采用均匀设计法确定样本点,通过数值计算求解安全系数,应用GEP方法拟合边坡的功能函数;借鉴遗传算法中的杂交概念,将其引... 提出了采用基因表达式编程(Gene Expression Programming,GEP)和混合粒子群相结合计算边坡可靠度的新方法。该方法采用均匀设计法确定样本点,通过数值计算求解安全系数,应用GEP方法拟合边坡的功能函数;借鉴遗传算法中的杂交概念,将其引入标准粒子群方法(Particle Swarm Optimization,PSO),形成混合粒子群方法(MPSO),改善了PSO方法的全局搜索能力,提高了方法的收敛速度和计算精度,可用于计算可靠度指标及相应的验算点。以2个典型的边坡为例,通过算例1与其他方法对比,验证了MPSO方法较标准PSO方法计算精度高、收敛速度快;分析了算法中各控制参数对可靠度指标的影响;算例2为隐式功能函数问题,将MPSO方法与GEP方法相结合求解可靠度指标。结果表明:MPSO-GEP方法对求解隐式功能函数的边坡可靠性问题具有很好的适应性,该方法科学可行且具有很好的应用前景。 展开更多
关键词 基因表达式编程(GEP) 混合粒子群方法(mpso) 响应面法(RSM) 边坡 可靠度
在线阅读 下载PDF
基于AGA与MPSO的非传统布局仓储货位分配优化 被引量:5
19
作者 胡颖聪 刘建胜 张有功 《高技术通讯》 EI CAS 北大核心 2018年第11期980-990,共11页
非传统布局是现代仓储管理的新热点,根据对非传统布局(Fishbone型)特征分析,针对货位分配优化问题,提出以出入库效率和货架稳定性为优化目标,建立多目标优化模型。设计了自适应遗传算法(AGA)和改进的粒子群优化算法(MPSO)进行求解。AGA... 非传统布局是现代仓储管理的新热点,根据对非传统布局(Fishbone型)特征分析,针对货位分配优化问题,提出以出入库效率和货架稳定性为优化目标,建立多目标优化模型。设计了自适应遗传算法(AGA)和改进的粒子群优化算法(MPSO)进行求解。AGA采用动态自适应策略改进选择、交叉、变异算子,克服初期"早熟",提高末期局部搜索,增强鲁棒性;考虑到PSO搜索过程的非线性复杂特征,引入非线性变化的惯性权重和时变加速的学习因子,提升早期全局搜索能力,改善末期收敛迟钝,优化算法整体性能。采用Matlab进行仿真实验,结合实例验证了本文方法的有效性与通用性。对比实验结果表明AGA在处理此类货位分配优化问题上优势更明显。 展开更多
关键词 非传统布局 货位分配优化 自适应遗传算法(AGA) 改进粒子群优化算法(mpso)
在线阅读 下载PDF
基于MPSO的有限缓冲区多产品厂间歇调度问题的研究 被引量:1
20
作者 李青青 徐震浩 顾幸生 《高技术通讯》 CAS CSCD 北大核心 2014年第8期866-873,共8页
研究了以最小化最大完工时间为目标的有限缓冲区多产品厂间歇调度问题,提出了一种基于多种群粒子群优化(MPSO)的间歇调度算法。该算法采用多种群,增加了种群初始粒子的多样性,在每一代子种群并行进化的过程中引入移民粒子,使子种群之间... 研究了以最小化最大完工时间为目标的有限缓冲区多产品厂间歇调度问题,提出了一种基于多种群粒子群优化(MPSO)的间歇调度算法。该算法采用多种群,增加了种群初始粒子的多样性,在每一代子种群并行进化的过程中引入移民粒子,使子种群之间相互影响和促进,避免算法过早地陷入局部最优,提高了算法的全局搜索能力;每代进化后选出子种群中的优秀粒子作为精华种群,并对其进行变邻域搜索(VNS),进一步提高了算法的收敛精度。通过对不同规模调度问题的仿真,以及与其它算法的对比,证明了该算法解决有限缓冲区多产品厂间歇调度问题的有效性和优越性。 展开更多
关键词 多种群粒子群优化(mpso) 有限缓冲区 间歇调度 移民粒子 变邻域搜索(VNS)
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部