期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
3
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimizatioN particle swarm optimizatioN (PSO) CLOUD computing system
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
4
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
5
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
6
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
基于PSO-LSTM-SATN模型的污水水质预测研究
7
作者 杨潞霞 王智瑜 +2 位作者 沈帅杰 马永杰 付一政 《工业水处理》 北大核心 2025年第6期159-166,共8页
为解决工业废水处理领域进水水质波动性大、随机性强、不具有周期性导致无法精准预测其水质的问题,提出粒子群优化算法(Particle Swarm Optimization,PSO)-长短期记忆网络模型(Long Short-Term Memory,LSTM)-自注意力机制(Self-Attentio... 为解决工业废水处理领域进水水质波动性大、随机性强、不具有周期性导致无法精准预测其水质的问题,提出粒子群优化算法(Particle Swarm Optimization,PSO)-长短期记忆网络模型(Long Short-Term Memory,LSTM)-自注意力机制(Self-Attention,SATN)污水水质预测模型。以山西省某煤炭水处理工厂7357组历史污水水质数据为基础,首先采用LSTM捕获进水水质中COD数据的长期依赖关系,然后采用SATN解决水质信息分布不均匀的问题,最后结合PSO对LSTM-SATN模型进行优化,帮助网络自动获取最佳参数和模型配置。评价结果显示,模型均方误差(Mean Square Error,MSE)、平均绝对误差(Mean Absolute Error,MAE)和平均绝对百分比误差(Mean Absolute Per⁃centage Error,MAPE)分别为0.5284(mg/L)2、0.2369 mg/L和4.1277%,与LSTM、门控循环单元结构(Gated Recur⁃rent Unit,GRU)、双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)相比,MSE、MAE、MAPE均有大幅降低,即该PSO-LSTM-SATN模型能够更准确地预测进水水质,为工厂日常运营管理方案提供合理的指导意见。 展开更多
关键词 污水水质预测 长短期记忆网络模型 粒子群优化算法 自注意力机制
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
8
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
基于粒子群算法的车体钢轨回路电流和过电压的抑制 被引量:1
9
作者 刘建城 孙传铭 +3 位作者 张作钦 朱涛 肖嵩 高国强 《铁道机车车辆》 北大核心 2024年第6期24-32,共9页
高速动车组接地系统中的车体钢轨回路电流和车体过电压问题会引起车体电压升高,车体电磁环境恶化,车载弱电和通讯系统损坏等问题,严重影响动车组的安全运行。围绕车体钢轨回路电流及车体电位问题,建立高速列车动态运行等效模型,基于模... 高速动车组接地系统中的车体钢轨回路电流和车体过电压问题会引起车体电压升高,车体电磁环境恶化,车载弱电和通讯系统损坏等问题,严重影响动车组的安全运行。围绕车体钢轨回路电流及车体电位问题,建立高速列车动态运行等效模型,基于模型对比分析了实测和仿真结果,研究动车组过电分相区间时车体横向和纵向过电压的分布以及过电压在车体的传播规律,分析列车在吸上线区间运行时各接地轮轴上的电流幅值变化和分布规律,并基于实测和仿真结果,分析车体钢轨回路电流分布,最后综合考虑车体钢轨回路电流和车体过电压危害值,结合粒子群算法给出一种可参考的定常接地参数的最优解,使优化后各车体过电压幅值和各接地轴的电流幅值处在更均衡的范围内。 展开更多
关键词 高速动车组 车体钢轨回路电流 车体过电压 粒子群算法 综合优化
在线阅读 下载PDF
基站异常情况下基于改进极限学习机的超宽带室内定位方法 被引量:11
10
作者 缪希仁 范建威 +2 位作者 江灏 陈静 黄新宇 《传感技术学报》 CAS CSCD 北大核心 2020年第10期1457-1466,共10页
在超宽带(UWB)室内定位系统中,定位基站极易受到干扰,从而影响定位系统的准确性、稳定性和可靠性,干扰较强时,会造成基站数据异常波动,无法完成准确定位。为解决UWB室内定位系统基站异常情况的定位问题,本文提出了一种基于粒子群优化的... 在超宽带(UWB)室内定位系统中,定位基站极易受到干扰,从而影响定位系统的准确性、稳定性和可靠性,干扰较强时,会造成基站数据异常波动,无法完成准确定位。为解决UWB室内定位系统基站异常情况的定位问题,本文提出了一种基于粒子群优化的极限学习机(PSO-ELM)定位模型,实现在定位基站发生异常情况下的高精度定位。该定位模型利用双边测距(TW-TOF)采集标签和基站的距离,运用极限学习机(ELM)建立室内定位解算模型;引入粒子群算法(PSO)优化极限学习机的隐含层权值和阈值参数,以克服ELM算法存在的缺点。实验结果表明:在基站正常情况下,PSO-ELM定位模型平均定位精度可达0.03 m,相比于传统TOA定位算法,精度了提高73%;同时在基站异常情况下,平均定位精度可达0.04 m,有效解决了当定位系统基站发生异常情况时无法完成正常定位的问题。 展开更多
关键词 超宽带 室内定位 基站异常 极限学习机 粒子群算法
在线阅读 下载PDF
基于多领导粒子策略的DMPSO算法在冷轧液压APC系统中的应用 被引量:1
11
作者 魏立新 王利平 +2 位作者 徐德树 林鹏 杨景明 《中国机械工程》 EI CAS CSCD 北大核心 2015年第23期3125-3129,共5页
冷轧液压伺服位置自动控制(APC)系统中,系统参数会随着运行时间发生改变,针对系统这一特性,提出了一种基于改进动态多目标粒子群(DMPSO)算法的PID控制器参数整定策略。当系统发生变化时,该策略利用动态多目标粒子群算法的寻优能力和对... 冷轧液压伺服位置自动控制(APC)系统中,系统参数会随着运行时间发生改变,针对系统这一特性,提出了一种基于改进动态多目标粒子群(DMPSO)算法的PID控制器参数整定策略。当系统发生变化时,该策略利用动态多目标粒子群算法的寻优能力和对环境变化的适应能力重新对PID参数进行整定和寻优。同时,针对算法存在的易于陷入局部最优和收敛速度较慢等缺陷,提出了一种基于多领导粒子策略的动态多目标粒子群算法。仿真结果表明:该控制系统对环境变化跟踪快,超调量小,调整时间短,性能明显优于传统PID控制。 展开更多
关键词 多领导粒子 动态多目标粒子群 APC 系统 PID 控制 dynamic multi-objective particle swarm optimization(DMPSO)
在线阅读 下载PDF
Layout problem of multi-component systems arising for improving maintainability 被引量:5
12
作者 罗旭 杨拥民 +2 位作者 葛哲学 温熙森 官凤娇 《Journal of Central South University》 SCIE EI CAS 2014年第5期1833-1841,共9页
To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainabili... To improve the mainlainability design efficiency and quality, a layout optimization method for maintainability of multi-component systems was proposed. The impact of the component layout design on system maintainability was analyzed, and the layout problem for maintainability was presented. It was formulated as an optimization problem, where maintainability, layout space and distance requirement were formulated as objective functions. A multi-objective particle swarm optimization algorithm, in which the constrained-domination relationship and the update strategy of the global best were simply modified, was then used to obtain Pareto optimal solutions for the maintainability layout design problem. Finally, application in oxygen generation system of a spacecraft was studied in detail to illustrate the effectiveness and usefulness of the proposed method. The results show that the concurrent maintainability design can be carried out during the layout design process by solving the layout optimization problem for maintainability. 展开更多
关键词 MAINTAINABILITY layout problem optimizatioN multi-component system multi-objective particle swarm optimization
在线阅读 下载PDF
非线性滑移滞回模型建模 被引量:1
13
作者 彭君义 李惠 铃木祥之 《沈阳建筑大学学报(自然科学版)》 EI CAS 2005年第4期325-328,共4页
目的为了对结构进行弹塑性动力分析以及评估其未来的性能,对结构的滞回特性需要建立合理的数学模型.方法利用三折线形式的函数关系来模拟试验滞回曲线的斜率与恢复力关系,并结合Duhem微分算子,建立描述滑移捏拢效应和刚度、强度退化的... 目的为了对结构进行弹塑性动力分析以及评估其未来的性能,对结构的滞回特性需要建立合理的数学模型.方法利用三折线形式的函数关系来模拟试验滞回曲线的斜率与恢复力关系,并结合Duhem微分算子,建立描述滑移捏拢效应和刚度、强度退化的微分滞回模型.然后使用粒子群优化方法,基于最小二乘法准则识别出模型中的待定参数.结果用参数辨识结果得到的仿真滞回曲线与试验滞回曲线的对比表明,笔者建立的非线性滑移滞回模型与试验结果吻合较好,包括了强度退化、刚度退化以及捏拢效应.结论根据滞回曲线斜率与恢复力的关系并结合Duhem微分算子来构造滞回模型,比扩展Bouc-Wen模型具有更广泛的建模适应能力.对于试验滞回曲线的建模问题,当模型结构可辨识时,粒子群算法能够稳健地识别出模型中的参数. 展开更多
关键词 非线性 微分滞回模型 Duhem算子 粒子群优化
在线阅读 下载PDF
轿车窗台外侧密封条装配性能的分析与优化方法
14
作者 李旻 谭孟 +3 位作者 上官文斌 李志超 刘杰 尤黎民 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第5期117-124,共8页
轿车窗台外侧密封条起防水、隔声和美观装饰等作用,装配性能和压缩变形特性是评价其设计效果的重要指标.文中提出了窗台外侧密封条装配性能的计算方法,计算了其装配性能指标,并进行了密封条样品装配性能测试,结果证实了计算方法的正确性... 轿车窗台外侧密封条起防水、隔声和美观装饰等作用,装配性能和压缩变形特性是评价其设计效果的重要指标.文中提出了窗台外侧密封条装配性能的计算方法,计算了其装配性能指标,并进行了密封条样品装配性能测试,结果证实了计算方法的正确性.文中还以夹持齿的长度、厚度及干涉量等因素为设计变量,建立了窗台外侧密封条的优化模型.基于响应面模型和多目标粒子群算法,给出了窗台外侧密封条装配性能的优化方法和最大改善选解法. 展开更多
关键词 窗台外侧密封条 有限元仿真 正交试验 响应面模型 多目标粒子群优化
在线阅读 下载PDF
Polyphase coded signal design for MIMO radar using MO-MicPSO 被引量:9
15
作者 Xiangneng Zeng Yongshun Zhang Yiduo Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期381-386,共6页
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population... A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption. 展开更多
关键词 multi-objective micro particle swarm optimization(MO-MicPSO) phase-coded signal multiple input multiple output(MIMO) radar ambiguity function.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部