Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue...Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.展开更多
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat...A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.展开更多
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve...To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.展开更多
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.
基金Projects(50974039,50634030) supported by the National Natural Science Foundation of China
文摘A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.
基金Supported by the National"Thirteenth Five-year Plan"National Key Program(2016YFD0701301)the Heilongjiang Provincial Achievement Transformation Fund Project(NB08B-011)。
文摘To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively.
基金supported by National Natural Science Foundation of China(11101205,71071071)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)+2 种基金Shanghai Municipal Natural Science Foundation(12ZR1408300)Humanity and Social Science Youth Foundation of Ministry of Education of China(12YJC910006)the Fundamental Research Funds for the Central Universities