A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cy...A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cycle length minimization problem was considered to generate optimal signal timings for roundabout, and a set of constraints to ensure feasibility and safety of the resulting optimal signal settings were proposed. Extensive experimental analyses in comparison with signalized intersection reveal that the proposed model is quite promising for application in design of roundabout signals, and the minimum cycle length can decrease from 186 s to 79 s while the capacity increases from 8 682 pcu/h to 9 011 pcu/h under high demand scenario. Sensitivity analysis with respect to the system performance show that the lane assignment plan, number of circulatory lanes and left turn ratio are three critical factors which have dominate impacts on performance of signalized roundabout展开更多
The traditional tangent impulse interception problem does not consider the influence of actual deviation.However,by taking the actual state deviation of the interceptor into the orbit design process,an interception or...The traditional tangent impulse interception problem does not consider the influence of actual deviation.However,by taking the actual state deviation of the interceptor into the orbit design process,an interception orbit that is more robust than the nominal orbit can be obtained.Therefore,we study the minimum time interception problem and the minimum terminal interception error problem under tangent impulse conditions and give an orbit optimization method that considers the interception time and the interception uncertainty.First,we express the interceptor's transfer time equation as a form of flight path angle,establish a global optimization model for solving the minimum time tangent impulse interception and give a hybrid optimization algorithm based on Augmented Lagrange Genetic Algorithm-Sequential Quadratic Programming(ALGA-SQP).Secondly,we use the universal time equation and Bootstrap resampling technology to calculate the interceptor's terminal error distribution and establish the relevant global optimization model by using the circumscribed cuboid volume of the interceptor's terminal position error ellipsoid as the optimization index.Finally,we combined the above two singleobjective optimization models to establish a global multi-objective optimization model that considers interception time and interception uncertainty and gave a hybrid multi-objective optimization algorithm based on Non-dominated Sorting Genetic Algorithm Ⅱ-Goal Achievement Method(NSGA2-GAM).The simulation example verifies the effectiveness of this method.展开更多
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population...A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.展开更多
The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for...The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.展开更多
基金Project(51178345) supported by the National Natural Science Foundation of ChinaProject(2011AA110305) supported by the National High Technology Research and Development Program of ChinaProject supported by the Program for Young Excellent Talents in Tongji University, China
文摘A signal optimization model for roundabout was control concept were used to eliminate the conflict points proposed based on dual-ring scheme and two stop lines for left turns and weaving sections at a roundabout. A cycle length minimization problem was considered to generate optimal signal timings for roundabout, and a set of constraints to ensure feasibility and safety of the resulting optimal signal settings were proposed. Extensive experimental analyses in comparison with signalized intersection reveal that the proposed model is quite promising for application in design of roundabout signals, and the minimum cycle length can decrease from 186 s to 79 s while the capacity increases from 8 682 pcu/h to 9 011 pcu/h under high demand scenario. Sensitivity analysis with respect to the system performance show that the lane assignment plan, number of circulatory lanes and left turn ratio are three critical factors which have dominate impacts on performance of signalized roundabout
文摘The traditional tangent impulse interception problem does not consider the influence of actual deviation.However,by taking the actual state deviation of the interceptor into the orbit design process,an interception orbit that is more robust than the nominal orbit can be obtained.Therefore,we study the minimum time interception problem and the minimum terminal interception error problem under tangent impulse conditions and give an orbit optimization method that considers the interception time and the interception uncertainty.First,we express the interceptor's transfer time equation as a form of flight path angle,establish a global optimization model for solving the minimum time tangent impulse interception and give a hybrid optimization algorithm based on Augmented Lagrange Genetic Algorithm-Sequential Quadratic Programming(ALGA-SQP).Secondly,we use the universal time equation and Bootstrap resampling technology to calculate the interceptor's terminal error distribution and establish the relevant global optimization model by using the circumscribed cuboid volume of the interceptor's terminal position error ellipsoid as the optimization index.Finally,we combined the above two singleobjective optimization models to establish a global multi-objective optimization model that considers interception time and interception uncertainty and gave a hybrid multi-objective optimization algorithm based on Non-dominated Sorting Genetic Algorithm Ⅱ-Goal Achievement Method(NSGA2-GAM).The simulation example verifies the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (60601016)
文摘A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption.
文摘The industrial Internet of Things(IIoT)is a new indus-trial idea that combines the latest information and communica-tion technologies with the industrial economy.In this paper,a cloud control structure is designed for IIoT in cloud-edge envi-ronment with three modes of 5G.For 5G based IIoT,the time sensitive network(TSN)service is introduced in transmission network.A 5G logical TSN bridge is designed to transport TSN streams over 5G framework to achieve end-to-end configuration.For a transmission control protocol(TCP)model with nonlinear disturbance,time delay and uncertainties,a robust adaptive fuzzy sliding mode controller(AFSMC)is given with control rule parameters.IIoT workflows are made up of a series of subtasks that are linked by the dependencies between sensor datasets and task flows.IIoT workflow scheduling is a non-deterministic polynomial(NP)-hard problem in cloud-edge environment.An adaptive and non-local-convergent particle swarm optimization(ANCPSO)is designed with nonlinear inertia weight to avoid falling into local optimum,which can reduce the makespan and cost dramatically.Simulation and experiments demonstrate that ANCPSO has better performances than other classical algo-rithms.