Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue...Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.展开更多
The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic mod...The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fas...The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.展开更多
矿山综合能源系统(mine integrated energy system,MIES)作为支撑煤矿绿色发展的重要途径,合理有效地对其运行效益进行评价是促进其发展的必要前提。然而,MIES运行效益评价一方面需要考虑能-煤流的强耦合关系,另一方面还需要应对系统运...矿山综合能源系统(mine integrated energy system,MIES)作为支撑煤矿绿色发展的重要途径,合理有效地对其运行效益进行评价是促进其发展的必要前提。然而,MIES运行效益评价一方面需要考虑能-煤流的强耦合关系,另一方面还需要应对系统运行不确定性对于评价结果准确性的影响,鉴于此,提出一种基于最优聚类系数的改进可拓灰云模型(optimal clustering coefficient based improved extension gray cloud,OCC-IEGC)的MIES运行效益评价框架。首先,考虑MIES生态特性,基于驱动力-压力-状态-影响-响应(driving-pressure-state-impact-response,DPSIR)模型建立MIES运行效益评价指标体系,并应用云雾化权重筛选方法获得具有最优合理性的组合权重。其次,构建基于可拓灰云的MIES运行效益评价模型,削弱系统运行不确定性及评价过程中的主观性和模糊性对评价结果的影响,并采用最优灰云聚类系数提高评价结果的可靠性。最后,通过算例验证所提指标体系和评价模型的有效性。展开更多
Reliability, maintainability and testability (RMT) are important properties of equipment, since they have important influ- ence on operational availability and life cycle costs (LCC). There- fore, weighting and op...Reliability, maintainability and testability (RMT) are important properties of equipment, since they have important influ- ence on operational availability and life cycle costs (LCC). There- fore, weighting and optimizing the three properties are of great significance. A new approach for optimization of RMT parameters is proposed. First of all, the model for the equipment operation pro- cess is established based on the generalized stochastic Petri nets (GSPN) theory. Then, by solving the GSPN model, the quantitative relationship between operational availability and RMT parameters is obtained. Afterwards, taking history data of similar equipment and operation process into consideration, a cost model of design, manufacture and maintenance is developed. Based on operational availability, the cost model and parameters ranges, an optimization model of RMT parameters is built. Finally, the effectiveness and practicability of this approach are validated through an example.展开更多
Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problem...Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.展开更多
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.
基金Project(50278062) supported by the National Natural Science Foundation of ChinaProject(003611611)supported by the Natural Science Foundation of Tianjin, China
文摘The optimal operation of water distribution networks under local pipe failures, such as water main breaks, was proposed. Based on a hydraulic analysis and a simulation of water distribution networks, a macroscopic model for a network under a local pipe failure was established by the statistical regression. After the operation objectives under a local pipe failure were determined, the optimal operation model was developed and solved by the genetic algorithm. The program was developed and examined by a city distribution network. The optimal operation alternative shows that the electricity cost is saved approximately 11%, the income of the water corporation is increased approximately 5%, and the pressure in the water distribution network is distributed evenly to ensure the network safe operation. Therefore, the proposed method for optimal operation under local pipe failure is feasible and cost-effective.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘The task of maintenance organization is very heavy at wartime.The usability of armaments may be greatly improved by efficient task scheduling.In order to recover the battle effectiveness of units in battlefield as fast as possible,dynamic maintenance scheduling models with subject taken into account were built on the basis of analysis the feature of maintenance task.Maintenance task scheduling problem is very complicated.So it is decomposed into two sub-problems:static maintenance task scheduling and dynamic maintenance task scheduling problem with subject taken into account.Corresponding mathematic models were built to these sub-problems and their solutions were proposed.Dynamic maintenance task scheduling with subject taken into account is on the basis of static maintenance task scheduling.With the task changing in battlefield,dynamic task scheduling can be realized by repeatedly call of static maintenance task scheduling with subject taken into account.The experimented results show that dynamic maintenance task scheduling method with maintenance subject taken into account is valid.
文摘Reliability, maintainability and testability (RMT) are important properties of equipment, since they have important influ- ence on operational availability and life cycle costs (LCC). There- fore, weighting and optimizing the three properties are of great significance. A new approach for optimization of RMT parameters is proposed. First of all, the model for the equipment operation pro- cess is established based on the generalized stochastic Petri nets (GSPN) theory. Then, by solving the GSPN model, the quantitative relationship between operational availability and RMT parameters is obtained. Afterwards, taking history data of similar equipment and operation process into consideration, a cost model of design, manufacture and maintenance is developed. Based on operational availability, the cost model and parameters ranges, an optimization model of RMT parameters is built. Finally, the effectiveness and practicability of this approach are validated through an example.
基金supported by the National Natural Science Foundation of China (51479151,61403288)。
文摘Most of the existing multivariable grey models are based on the 1-order derivative and 1-order accumulation, which makes the parameters unable to be adjusted according to the data characteristics of the actual problems. The results about fractional derivative multivariable grey models are very few at present. In this paper, a multivariable Caputo fractional derivative grey model with convolution integral CFGMC(q, N) is proposed. First, the Caputo fractional difference is used to discretize the model, and the least square method is used to solve the parameters. The orders of accumulations and differential equations are determined by using particle swarm optimization(PSO). Then, the analytical solution of the model is obtained by using the Laplace transform, and the convergence and divergence of series in analytical solutions are also discussed. Finally, the CFGMC(q, N) model is used to predict the municipal solid waste(MSW). Compared with other competition models, the model has the best prediction effect. This study enriches the model form of the multivariable grey model, expands the scope of application, and provides a new idea for the development of fractional derivative grey model.