Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue...Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.展开更多
A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated ...A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.展开更多
A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established...A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.展开更多
Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qu...Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qualities. Firstly, we take into account the relation among tasks and build the single task nonlinear optimal model with a set of platform constraints. The Lagrange relaxation method and the pruning strategy are used to solve the model. Secondly, this paper presents optimization-based planning algorithms for efficiently allocating platforms to multiple tasks. To achieve the balance of the resource assignments among tasks, the m-best assignment algorithm and the pair-wise exchange(PWE)method are used to maximize multiple tasks completion qualities.Finally, a series of experiments are designed to verify the superiority and effectiveness of the proposed model and algorithms.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
针对持续扰动下的分布式状态耦合非线性系统,提出一种新的多耦合分布式经济模型预测控制(Economic model predictive control,EMPC)策略.由于耦合非线性系统的经济性能函数的非凸性和非正定性,首先引入关于经济最优平衡点的正定辅助函...针对持续扰动下的分布式状态耦合非线性系统,提出一种新的多耦合分布式经济模型预测控制(Economic model predictive control,EMPC)策略.由于耦合非线性系统的经济性能函数的非凸性和非正定性,首先引入关于经济最优平衡点的正定辅助函数和相应的辅助优化问题.接着,利用辅助函数的最优值函数构造原始分布式EMPC的一类隐式收缩约束.然后,建立状态耦合分布式EMPC的递推可行性和闭环系统关于最优经济平衡点的输入到状态稳定性(Input-to-state stability,ISS).最后,以耦合的四个连续搅拌釜反应器(Continuous stirred tank reactors,CSTRs)为例,验证本文所提策略的有效性.展开更多
基金supported by the National Key Research and Development Program(2021YFB3502500).
文摘Multi-objective optimization(MOO)for the microwave metamaterial absorber(MMA)normally adopts evolutionary algo-rithms,and these optimization algorithms require many objec-tive function evaluations.To remedy this issue,a surrogate-based MOO algorithm is proposed in this paper where Kriging models are employed to approximate objective functions.An efficient sampling strategy is presented to sequentially capture promising samples in the design region for exact evaluations.Firstly,new sample points are generated by the MOO on surro-gate models.Then,new samples are captured by exploiting each objective function.Furthermore,a weighted sum of the improvement of hypervolume(IHV)and the distance to sampled points is calculated to select the new sample.Compared with two well-known MOO algorithms,the proposed algorithm is vali-dated by benchmark problems.In addition,two broadband MMAs are applied to verify the feasibility and efficiency of the proposed algorithm.
基金Project(2006AA060201) supported by the National High Technology Research and Development Program of China
文摘A mathematical mechanism model was proposed for the description and analysis of the heat-stirring-acid leaching process.The model is proved to be effective by experiment.Afterwards,the leaching problem was formulated as a constrained multi-objective optimization problem based on the mechanism model.A two-stage guide multi-objective particle swarm optimization(TSG-MOPSO) algorithm was proposed to solve this optimization problem,which can accelerate the convergence and guarantee the diversity of pareto-optimal front set as well.Computational experiment was conducted to compare the solution by the proposed algorithm with SIGMA-MOPSO by solving the model and with the manual solution in practice.The results indicate that the proposed algorithm shows better performance than SIGMA-MOPSO,and can improve the current manual solutions significantly.The improvements of production time and economic benefit compared with manual solutions are 10.5% and 7.3%,respectively.
文摘A support vector machine with guadratic polynomial kernel function based nonlinear model multi-step-ahead optimizing predictive controller was presented. A support vector machine based predictive model was established by black-box identification. And a quadratic objective function with receding horizon was selected to obtain the controller output. By solving a nonlinear optimization problem with equality constraint of model output and boundary constraint of controller output using Nelder-Mead simplex direct search method, a sub-optimal control law was achieved in feature space. The effect of the controller was demonstrated on a recognized benchmark problem and a continuous-stirred tank reactor. The simulation results show that the multi-step-ahead predictive controller can be well applied to nonlinear system, with better performance in following reference trajectory and disturbance-rejection.
基金supported by the National Natural Science Foundation of China(61573017 61703425)+2 种基金the Aeronautical Science Fund(20175796014)the Shaanxi Province Natural Science Foundation Research Project(2016JQ6062 2017JM6062)
文摘Platform planning is one of the important problems in the command and control(C2) field. Hereto, we analyze the platform planning problem and present nonlinear optimal model aiming at maximizing the task completion qualities. Firstly, we take into account the relation among tasks and build the single task nonlinear optimal model with a set of platform constraints. The Lagrange relaxation method and the pruning strategy are used to solve the model. Secondly, this paper presents optimization-based planning algorithms for efficiently allocating platforms to multiple tasks. To achieve the balance of the resource assignments among tasks, the m-best assignment algorithm and the pair-wise exchange(PWE)method are used to maximize multiple tasks completion qualities.Finally, a series of experiments are designed to verify the superiority and effectiveness of the proposed model and algorithms.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘针对持续扰动下的分布式状态耦合非线性系统,提出一种新的多耦合分布式经济模型预测控制(Economic model predictive control,EMPC)策略.由于耦合非线性系统的经济性能函数的非凸性和非正定性,首先引入关于经济最优平衡点的正定辅助函数和相应的辅助优化问题.接着,利用辅助函数的最优值函数构造原始分布式EMPC的一类隐式收缩约束.然后,建立状态耦合分布式EMPC的递推可行性和闭环系统关于最优经济平衡点的输入到状态稳定性(Input-to-state stability,ISS).最后,以耦合的四个连续搅拌釜反应器(Continuous stirred tank reactors,CSTRs)为例,验证本文所提策略的有效性.
文摘半挂车辆的非稳定运动学特性为其泊车过程中自主运动规划带来严峻挑战。针对半挂车在多障碍物的静态场景中泊车运动规划算法效率低、结果平滑性差等问题,本文提出了序列式运动规划方法(sequential motion planning algorithm,SMPA)。首先,提出了基于二次规划策略和改进双向快速扩展随机树(bidirectional rapidly-exploring random tree algorithm,Bi-RRT)的初始路径生成方法。然后,结合车辆非完整微分约束下的路径节点可行性判别方法研究,提出基于概率的目标偏向采样策略,提高了采样效率。最后,构建了面向车辆系统控制变量连续性的非线性最优化控制模型,解决泊车换向点的对接问题,提高了泊车轨迹平滑性。仿真结果表明,该方法在多障碍物场景中,规划时间相比Hybrid A*和Bi-RRT分别降低了86.71%和21.44%,轨迹质量也更具优越性。