期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
Multi-objective fuzzy particle swarm optimization based on elite archiving and its convergence 被引量:1
1
作者 Wei Jingxuan Wang Yuping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期1035-1040,共6页
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob... A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front. 展开更多
关键词 multi-objective optimization particle swarm optimization fuzzy personal best fuzzy global best elite archiving.
在线阅读 下载PDF
A hybrid discrete particle swarm optimization-genetic algorithm for multi-task scheduling problem in service oriented manufacturing systems 被引量:4
2
作者 武善玉 张平 +2 位作者 李方 古锋 潘毅 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期421-429,共9页
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis... To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm. 展开更多
关键词 service-oriented architecture (SOA) cyber physical systems (CPS) multi-task scheduling service allocation multi-objective optimization particle swarm algorithm
在线阅读 下载PDF
Immune particle swarm optimization of linear frequency modulation in acoustic communication 被引量:4
3
作者 Haipeng Ren Yang Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期450-456,共7页
With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels beca... With the exploration of the ocean, underwater acoustic communication has attracted more and more attention in recent years. The underwater acoustic channel is considered to be one of the most complicated channels because it suffers from more serious multipath effect, fewer available bandwidths and quite complex noise. Since the signals experience a serious distortion after being transmitted through the underwater acoustic channel, the underwater acoustic communication experiences a high bit error rate (BER). To solve this problem, carrier waveform inter- displacement (CWlD) modulation is proposed. It has been proved that CWlD modulation is an effective method to decrease BER. The linear frequency modulation (LFM) carrier-waves are used in CWlD modulation. The performance of the communication using CWID modulation is sensitive to the change of the frequency band of LFM carrier-waves. The immune particle swarm optimization (IPSO) is introduced to search for the optimal frequency band of the LFM carrier-waves, due to its excellent performance in solving complicated optimization problems. The multi-objective and multi- peak optimization nature of the IPSO gives a suitable description of the relationship between the upper band and the lower band of the LFM carrier-waves. Simulations verify the improved perfor- mance and effectiveness of the optimization method. 展开更多
关键词 underwater acoustic communication carrier waveform inter-displacement (CWlD) multi-objective optimization immune particle swarm optimization (IPSO).
在线阅读 下载PDF
Multi-objective workflow scheduling in cloud system based on cooperative multi-swarm optimization algorithm 被引量:2
4
作者 YAO Guang-shun DING Yong-sheng HAO Kuang-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1050-1062,共13页
In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired ... In order to improve the performance of multi-objective workflow scheduling in cloud system, a multi-swarm multiobjective optimization algorithm(MSMOOA) is proposed to satisfy multiple conflicting objectives. Inspired by division of the same species into multiple swarms for different objectives and information sharing among these swarms in nature, each physical machine in the data center is considered a swarm and employs improved multi-objective particle swarm optimization to find out non-dominated solutions with one objective in MSMOOA. The particles in each swarm are divided into two classes and adopt different strategies to evolve cooperatively. One class of particles can communicate with several swarms simultaneously to promote the information sharing among swarms and the other class of particles can only exchange information with the particles located in the same swarm. Furthermore, in order to avoid the influence by the elastic available resources, a manager server is adopted in the cloud data center to collect the available resources for scheduling. The quality of the proposed method with other related approaches is evaluated by using hybrid and parallel workflow applications. The experiment results highlight the better performance of the MSMOOA than that of compared algorithms. 展开更多
关键词 multi-objective WORKFLOW scheduling multi-swarm optimization particle swarm optimization (PSO) CLOUD computing system
在线阅读 下载PDF
Particle swarm optimization algorithm for simultaneous optimal placement and sizing of shunt active power conditioner(APC)and shunt capacitor in harmonic distorted distribution system
5
作者 Mohammadi Mohammad 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2035-2048,共14页
Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into p... Due to development of distribution systems and increase in electricity demand,the use of capacitor banks increases.From the other point of view,nonlinear loads generate and inject considerable harmonic currents into power system.Under this condition if capacitor banks are not properly selected and placed in the power system,they could amplify and propagate these harmonics and deteriorate power quality to unacceptable levels.With attention of disadvantages of passive filters,such as occurring resonance,nowadays the usage of this type of harmonic compensator is restricted.On the other side,one of parallel multi-function compensating devices which are recently used in distribution system to mitigate voltage sag and harmonic distortion,performs power factor correction,and improves the overall power quality as active power conditioner(APC).Therefore,the utilization of APC in harmonic distorted system can affect and change the optimal location and size of shunt capacitor bank under harmonic distortion condition.This paper presents an optimization algorithm for improvement of power quality using simultaneous optimal placement and sizing of APC and shunt capacitor banks in radial distribution networks in the presence of voltage and current harmonics.The algorithm is based on particle swarm optimization(PSO).The objective function includes the cost of power losses,energy losses and those of the capacitor banks and APCs. 展开更多
关键词 shunt capacitor banks active power conditioner multi-objective function particle swarm optimization (PSO) harmonic distorted distribution system
在线阅读 下载PDF
Resource allocation optimization of equipment development task based on MOPSO algorithm 被引量:8
6
作者 ZHANG Xilin TAN Yuejin and YANG Zhiwei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1132-1143,共12页
Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees ... Resource allocation for an equipment development task is a complex process owing to the inherent characteristics,such as large amounts of input resources,numerous sub-tasks,complex network structures,and high degrees of uncertainty.This paper presents an investigation into the influence of resource allocation on the duration and cost of sub-tasks.Mathematical models are constructed for the relationships of the resource allocation quantity with the duration and cost of the sub-tasks.By considering the uncertainties,such as fluctuations in the sub-task duration and cost,rework iterations,and random overlaps,the tasks are simulated for various resource allocation schemes.The shortest duration and the minimum cost of the development task are first formulated as the objective function.Based on a multi-objective particle swarm optimization(MOPSO)algorithm,a multi-objective evolutionary algorithm is constructed to optimize the resource allocation scheme for the development task.Finally,an uninhabited aerial vehicle(UAV)is considered as an example of a development task to test the algorithm,and the optimization results of this method are compared with those based on non-dominated sorting genetic algorithm-II(NSGA-II),non-dominated sorting differential evolution(NSDE)and strength pareto evolutionary algorithm-II(SPEA-II).The proposed method is verified for its scientific approach and effectiveness.The case study shows that the optimization of the resource allocation can greatly aid in shortening the duration of the development task and reducing its cost effectively. 展开更多
关键词 resource allocation equipment development task multi-objective particle swarm optimization(MOPSO) develop ment task simulation.
在线阅读 下载PDF
Multi-objective reconfigurable production line scheduling for smart home appliances 被引量:2
7
作者 LI Shiyun ZHONG Sheng +4 位作者 PEI Zhi YI Wenchao CHEN Yong WANG Cheng ZHANG Wenzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期297-317,共21页
In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In ord... In a typical discrete manufacturing process,a new type of reconfigurable production line is introduced,which aims to help small-and mid-size enterprises to improve machine utilization and reduce production cost.In order to effectively handle the production scheduling problem for the manufacturing system,an improved multi-objective particle swarm optimization algorithm based on Brownian motion(MOPSO-BM)is proposed.Since the existing MOPSO algorithms are easily stuck in the local optimum,the global search ability of the proposed method is enhanced based on the random motion mechanism of the BM.To further strengthen the global search capacity,a strategy of fitting the inertia weight with the piecewise Gaussian cumulative distribution function(GCDF)is included,which helps to maintain an excellent convergence rate of the algorithm.Based on the commonly used indicators generational distance(GD)and hypervolume(HV),we compare the MOPSO-BM with several other latest algorithms on the benchmark functions,and it shows a better overall performance.Furthermore,for a real reconfigurable production line of smart home appliances,three algorithms,namely non-dominated sorting genetic algorithm-II(NSGA-II),decomposition-based MOPSO(dMOPSO)and MOPSO-BM,are applied to tackle the scheduling problem.It is demonstrated that MOPSO-BM outperforms the others in terms of convergence rate and quality of solutions. 展开更多
关键词 reconfigurable production line improved particle swarm optimization(PSO) multi-objective optimization flexible flowshop scheduling smart home appliances
在线阅读 下载PDF
考虑并网监测信息的有源配电网μPMU优化配置
8
作者 梁振锋 田雨鑫 +1 位作者 闫俊杰 王晓卫 《电力系统及其自动化学报》 北大核心 2025年第3期66-74,共9页
为提高有源配电网状态估计精度,提出一种考虑并网监测信息的微型同步相量测量单元优化配置方法。分析有源配电网数据终端单元、分布式电源和电动汽车并网点监测装置、高级量测体系及微型同步相量测量单元等量测信息特征,建立以混合状态... 为提高有源配电网状态估计精度,提出一种考虑并网监测信息的微型同步相量测量单元优化配置方法。分析有源配电网数据终端单元、分布式电源和电动汽车并网点监测装置、高级量测体系及微型同步相量测量单元等量测信息特征,建立以混合状态估计平均绝对误差最小为目标函数、以微型同步相量测量单元安装数目和状态估计最大允许误差为约束条件的微型同步相量测量单元优化配置模型,并采用粒子群优化算法求解。算例分析表明,考虑并网点监测数据能有效提升状态估计精度,且可减少微型同步相量测量单元的配置数量。 展开更多
关键词 并网点监测 有源配电网 微型同步相量测量单元 优化配置 状态估计 粒子群优化算法
在线阅读 下载PDF
Polyphase coded signal design for MIMO radar using MO-MicPSO 被引量:9
9
作者 Xiangneng Zeng Yongshun Zhang Yiduo Guo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期381-386,共6页
A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population... A novel modified optimization technique known as the multi-objective micro particle swarm optimization(MO-MicPSO) is proposed for polyphase coded signal design.The proposed MO-MicPSO requires only a small population size compared with the standard particle swarm optimization that uses a larger population size.This new method is guided by an elite archive to finish the multi-objective optimization.The orthogonal polyphase coded signal(OPCS) can fundamentally improve the multiple input multiple output(MIMO) radar system performance,with which the radar system has high resolution and abundant signal channels.Simulation results on the polyphase coded signal design show that the MO-MicPSO can perform quite well for this high-dimensional multi-objective optimized problem.Compared with particle swarm optimization or genetic algorithm,the proposed MO-MicPSO has a better optimized efficiency and less time consumption. 展开更多
关键词 multi-objective micro particle swarm optimization(mo-micpso) phase-coded signal multiple input multiple output(MIMO) radar ambiguity function.
在线阅读 下载PDF
基于多目标粒子群的农村微电网源网荷储协同优化运行
10
作者 张志远 武永军 +3 位作者 李熙钦 周莉梅 赵虎 王承民 《电网与清洁能源》 北大核心 2025年第4期113-119,127,共8页
为提升含分布式电源的农村微电网运行稳定性,对基于多目标粒子群算法的农村微电网源网荷储多目标优化方法进行研究。以最小网络损耗、最小电压偏移量与最大能源利用率等为目标函数,结合分布式电源出力、农村微电网运行以及储能等约束条... 为提升含分布式电源的农村微电网运行稳定性,对基于多目标粒子群算法的农村微电网源网荷储多目标优化方法进行研究。以最小网络损耗、最小电压偏移量与最大能源利用率等为目标函数,结合分布式电源出力、农村微电网运行以及储能等约束条件,建立了含分布式电源的农村微电网源网荷储多目标优化模型;在多目标粒子群算法内,引入了ε-支配关系的网格向量修剪策略以加快算法收敛效率;基于华北地区某农村实际微电网进行仿真分析,证明所提优化方法可有效降低农村微电网的网络损耗、电压偏移量,提升了能源利用率。 展开更多
关键词 多目标粒子群 分布式光伏 农村微电网 源网荷储 多目标优化 修剪策略
在线阅读 下载PDF
辐射冷却红外隐身微缝阵列结构设计
11
作者 于真鹤 郭何涛 +2 位作者 李文卓 杨晓龙 杨淞皓 《航空发动机》 北大核心 2025年第4期71-77,共7页
航空器高温热载部件热流密度持续增大、红外热辐射特性显著。为了精确调控红外波段电磁波选择性吸收/辐射,实现高性能红外隐身,提出在高温热载部件材料表面上直接构建亚微米尺度微缝阵列结构,实现高性能辐射冷却红外隐身,并开展了结构... 航空器高温热载部件热流密度持续增大、红外热辐射特性显著。为了精确调控红外波段电磁波选择性吸收/辐射,实现高性能红外隐身,提出在高温热载部件材料表面上直接构建亚微米尺度微缝阵列结构,实现高性能辐射冷却红外隐身,并开展了结构仿真优化设计研究。结果表明:设计的微缝轮廓能够产生强烈的表面等离子共振,实现红外波段电磁波选择性吸收/辐射的精确控制,达到辐射冷却红外隐身的功能;设计的结构经粒子群算法优化后,红外隐身性能较未处理表面的提高42%;横电波和横磁波在0~30°范围入射时,结构辐射冷却红外隐身性能未产生显著变化,表现出较好的角度不敏感性;微缝阵列构型预期可通过高效线扫描式加工来获得。提出的结构和设计方法为促进航空器高温热载部件红外隐身技术发展提供了新思路。 展开更多
关键词 红外隐身 辐射冷却 选择性发射 微纳结构 粒子群优化 航空发动机
在线阅读 下载PDF
基于多源信息融合告警的微电网故障定位方法研究
12
作者 杨志淳 李牧远 +3 位作者 韩佶 杨帆 沈煜 闵怀东 《电测与仪表》 北大核心 2025年第6期45-55,共11页
针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算... 针对故障诊断数据来源单一导致结果抗噪性和鲁棒性差问题,文章提出一种融合多源告警信息的微电网继电保护故障定位方法。基于对称分量法对微电网故障进行建模,通过求解正、负序网络微分方程,实现对短路故障的特性分析。采用相似性计算对数据进行处理并进行可视化,通过卷积神经网络对故障信息进行辨识,实现告警信息智能生成。采用开关函数法对多源告警信息进行加权融合,并采用改进二进制量子粒子群算法对故障模型进行求解。最后,在改进IEEE 33系统中进行了算例分析,结果表明,所提方法能够准确生成故障告警信息并快速定位故障,且在多点信息畸变下仍具有较高的定位精度效果。 展开更多
关键词 故障定位 微电网故障告警 多源信息融合 二进制量子粒子群 卷积神经网络
在线阅读 下载PDF
基于IQPSO-EKF的多传感器融合姿态测量方法研究 被引量:1
13
作者 胡启国 王磊 +1 位作者 马鉴望 任渝荣 《机电工程》 CAS 北大核心 2024年第2期353-363,共11页
为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除... 为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除噪、滤波、校准等);然后,参考现有飞行器的坐标系,建立了姿态解算模型,通过姿态角数学模型及运动学分析,构建了EFK状态方程,针对EKF方法参数估计不准确的问题,以分段混沌映射优化初始种群,引入平均位置最优值来避免陷入局部最优的IQPSO-EFK算法,优化EKF的系统、测量噪声的协方差参数;最后,对改进算法和三组姿态误差估计进行了对比实验。研究结果表明:对比三种典型目标函数,IQPSO-EFK相较于普通粒子群算法(QPSO-EFK)具有更强的寻优能力与收敛精度;对比三组旋转速度姿态测量误差,基于IQPSO-EKF算法的姿态测量方法在测量误差时比真实测量误差减少了约86.3%,比扩展卡尔曼滤波减少了约68.7%,比普通粒子群算法减少了约28.2%,证明该算法有效地提高了MEMS传感器测量精度。 展开更多
关键词 竖井掘进 角度测量仪器 姿态测量 微机电系统传感器 多传感器融合 改进量子粒子群-扩展卡尔曼滤波
在线阅读 下载PDF
考虑电-氢-热多能互补的微网多目标优化配置 被引量:6
14
作者 吕振宇 丁磊 +2 位作者 吴在军 王琦 王维 《电力工程技术》 北大核心 2024年第2期11-20,共10页
氢储能具有储能容量大、储存时间长、清洁无污染、可实现多种能源网络互联互补和协同优化等诸多优点,有望成为推动分布式能源发展和提升终端能源利用效率的重要支撑技术。为了提高独立型微网供电可靠性及可再生能源利用率,文中分析了典... 氢储能具有储能容量大、储存时间长、清洁无污染、可实现多种能源网络互联互补和协同优化等诸多优点,有望成为推动分布式能源发展和提升终端能源利用效率的重要支撑技术。为了提高独立型微网供电可靠性及可再生能源利用率,文中分析了典型电、氢、热装置的运行特性,提出考虑电-氢-热多能互补的独立微网多目标优化配置模型,并基于模拟退火的粒子群(simulated annealing particle swarm optimization,SAPSO)算法对目标问题进行求解,获得不同配置方案下的技术经济指标。最后,通过东北某地独立微网优化配置算例,基于MATLAB平台验证了所提多能互补配置方案较传统电储能配置方案负荷失电率降低了3.18%,可再生能源利用率提高了8.37%。所提配置方案可有效促进可再生能源消纳,保证独立微网的供电可靠性。 展开更多
关键词 多能互补 氢储能 微网 多目标优化 可靠性 模拟退火的粒子群优化(SAPSO)算法
在线阅读 下载PDF
基于优化粒子群算法的微纳卫星电机参数整定 被引量:1
15
作者 周航 王昊 金仲和 《电机与控制学报》 EI CSCD 北大核心 2024年第10期13-23,共11页
针对传统PID控制器控制无刷电机时系统响应慢、速度波动大的问题,以及手动整定大规模电机参数繁琐重复的问题,采用了一种基于粒子群优化算法的无刷直流电机PID参数整定方法,用于确定电机闭环控制系统中PI控制器的参数。首先建立磁场定... 针对传统PID控制器控制无刷电机时系统响应慢、速度波动大的问题,以及手动整定大规模电机参数繁琐重复的问题,采用了一种基于粒子群优化算法的无刷直流电机PID参数整定方法,用于确定电机闭环控制系统中PI控制器的参数。首先建立磁场定向控制技术驱动的无刷直流电机控制系统仿真模型,然后在此模型上应用优化粒子群算法进行参数整定优化的迭代过程,得到整定后的控制器参数结果。分析优化粒子群算法整定后的电机速度响应和力矩输出情况,并与传统手动整定结果和其他算法的整定结果进行对比。实验结果表明,提出的优化粒子群算法整定的控制器速度响应更快并且输出力矩更稳定,并且对电机参数的小幅度变化有鲁棒性,该方法可以适用于大规模同类别同批次的电机控制器参数标定。 展开更多
关键词 微纳卫星 控制系统 无刷直流电机 PID控制 参数整定 粒子群算法
在线阅读 下载PDF
复杂地形风电场微观选址的GA-PSO混合算法研究 被引量:1
16
作者 胡伟成 杨庆山 +3 位作者 聂彪 陈华鹏 闫渤文 许紫刚 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期118-125,共8页
提出一种结合改进遗传算法(GA)和粒子群算法(PSO)的GA-PSO混合算法对复杂地形的风力机排布方案进行优化。以湖南省某实际复杂地形为对象,开展风场全风向数值模拟,结合长期观测风资料评估区域的潜在风能分布,提出考虑网格预处理、时变变... 提出一种结合改进遗传算法(GA)和粒子群算法(PSO)的GA-PSO混合算法对复杂地形的风力机排布方案进行优化。以湖南省某实际复杂地形为对象,开展风场全风向数值模拟,结合长期观测风资料评估区域的潜在风能分布,提出考虑网格预处理、时变变异率、唯一化和并行化的改进GA(IGA)对风力机排布方案进行优化,在此基础上利用PSO算法进行进一步优化,并针对尾流模型和目标函数对优化结果的影响进行不确定性分析。结果表明,在复杂地形风电场微观选址方面,所提GA-PSO算法比贪婪算法、GA、IGA分别改善16.4%、12.9%和5.1%。 展开更多
关键词 风电场 遗传算法 粒子群算法 复杂地形 微观选址 计算流体动力学
在线阅读 下载PDF
基于PSO的FeCoNiCrMn高熵合金微铣削参数优化
17
作者 李潭 彭宝营 +1 位作者 王鹏家 庞英杰 《机床与液压》 北大核心 2024年第23期118-122,共5页
为了分析FeCoNiCrMn高熵合金的微铣削加工特性,采用正交试验法,探究主轴转速、每齿进给量、铣削深度等铣削参数对其微铣削力的影响。通过多元线性回归分析方法,建立FeCoNiCrMn高熵合金各向微铣削力的预测模型。以FeCoNiCrMn高熵合金加... 为了分析FeCoNiCrMn高熵合金的微铣削加工特性,采用正交试验法,探究主轴转速、每齿进给量、铣削深度等铣削参数对其微铣削力的影响。通过多元线性回归分析方法,建立FeCoNiCrMn高熵合金各向微铣削力的预测模型。以FeCoNiCrMn高熵合金加工时的铣削力和加工效率为优化目标,建立多目标优化模型,并通过粒子群优化算法对试验铣削参数进行优化。结果表明:采用粒子群算法优化后的铣削参数加工不仅降低了合金的铣削力,同时材料去除率提高了7.55%;在加工FeCoNiCrMn高熵合金时,应选择较大的主轴转速和每齿进给量以及较低的铣削深度,以有效降低铣削力并提高加工效率。 展开更多
关键词 FeCoNiCrMn高熵合金 微铣削 参数优化 粒子群优化算法
在线阅读 下载PDF
王徐庄油田薄层生物石灰岩小—微裂缝识别及建模
18
作者 李云鹏 林学春 +4 位作者 余星辰 康志宏 李佩敬 王亚静 祁爱平 《新疆石油地质》 CAS CSCD 北大核心 2024年第6期671-679,共9页
小—微裂缝作为王徐庄油田沙河街组薄层生物石灰岩重要的储集空间之一,因缺乏有效的测量方法和表征技术,导致其研究较为困难,影响了油气开发中流体流动能力的预测。综合岩心、岩石薄片、CT扫描、地层微电阻率扫描成像测井、常规测井等资... 小—微裂缝作为王徐庄油田沙河街组薄层生物石灰岩重要的储集空间之一,因缺乏有效的测量方法和表征技术,导致其研究较为困难,影响了油气开发中流体流动能力的预测。综合岩心、岩石薄片、CT扫描、地层微电阻率扫描成像测井、常规测井等资料,对小—微裂缝的发育情况开展研究。采用PSO-BP神经网络预测研究区裂缝性储集层发育情况及分布特征,提出了离散裂缝网络模拟方法,模拟了小—微裂缝的空间展布。结果表明:小—微裂缝发育的生物石灰岩深、浅电阻率幅差较大;研究区生物石灰岩小—微裂缝较为发育,对改善储集层物性和注水受效方向有重要意义;小—微裂缝受控于断裂带和生物石灰岩沉积微相。油藏数值模拟证实,融合小—微裂缝介质的双孔双渗模型的油水关系动态拟合效果更好。 展开更多
关键词 王徐庄油田 沙河街组 生物石灰岩 小—微裂缝 粒子群优化算法 BP神经网络 离散裂缝网络模型
在线阅读 下载PDF
基于鸟群算法的微电网多目标运行优化 被引量:45
19
作者 曾嶒 彭春华 +2 位作者 王奎 张艳伟 张明瀚 《电力系统保护与控制》 EI CSCD 北大核心 2016年第13期117-122,共6页
为了在微电网的运行中寻找到最理想的调度策略,对于微电网的多目标优化问题,采用传统智能算法求解易陷入局部最优而难于找到全局最优解,因此采用一种生物启发式算法——鸟群算法,对以运行成本及环境污染度为目标的微电网多目标优化模型... 为了在微电网的运行中寻找到最理想的调度策略,对于微电网的多目标优化问题,采用传统智能算法求解易陷入局部最优而难于找到全局最优解,因此采用一种生物启发式算法——鸟群算法,对以运行成本及环境污染度为目标的微电网多目标优化模型进行求解。该算法模仿鸟群觅食、警觉、迁移的习性,生成对应的种群更新策略,兼具粒子群算法搜索效率高和微分进化算法稳定性好的优点。通过与两者寻优结果比较,表明该算法具有较强的全局、局部搜索能力且收敛鲁棒性好的特点。 展开更多
关键词 鸟群算法 粒子群算法 微分进化算法 微电网 多目标优化
在线阅读 下载PDF
基于粒子群优化算法的含多种供能系统的微网经济运行分析 被引量:98
20
作者 杨佩佩 艾欣 +1 位作者 崔明勇 雷之力 《电网技术》 EI CSCD 北大核心 2009年第20期38-42,共5页
从成本和效益2个方面详细分析了微网的经济性,在微网基本结构的基础上进行了简化,给出了供电、供热、供气一体化的微网结构,建立了考虑温室气体、污染物排放的以微网运行成本最低为目标函数的微网经济模型,并用粒子群优化算法对上述模... 从成本和效益2个方面详细分析了微网的经济性,在微网基本结构的基础上进行了简化,给出了供电、供热、供气一体化的微网结构,建立了考虑温室气体、污染物排放的以微网运行成本最低为目标函数的微网经济模型,并用粒子群优化算法对上述模型进行求解。算例结果验证了该模型的有效性和可行性,表明在大电网中并入微网具有较高的经济性。 展开更多
关键词 微网 微电源 成木效益分析 经济模型 粒子群 优化(PSO)
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部