In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,...In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,we convert the problem(MLFP)to a problem(EP2)that is equivalent to it.Secondly,by applying the convex relaxation technique to problem(EP2),a convex quadratic relaxation problem(CQRP)is obtained.Then,the overall framework of the algorithm is given and its convergence is proved,the worst-case iteration number is also estimated.Finally,experimental data are listed to illustrate the effectiveness of the algorithm.展开更多
To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is pro...To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.展开更多
Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in net...Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.展开更多
Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied af...Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.展开更多
In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be...In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.展开更多
A new heuristic algorithm is proposed for solving general integer linear programming problems. In the algorithm, the objective function hyperplane is used as a cutting plane, and then by introducing a special set of a...A new heuristic algorithm is proposed for solving general integer linear programming problems. In the algorithm, the objective function hyperplane is used as a cutting plane, and then by introducing a special set of assistant sets, an efficient heuristic search for the solution to the integer linear program is carried out in the sets on the objective function hyperplane. A simple numerical example shows that the algorithm is efficient for some problems, and therefore, of practical interest.展开更多
We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the s...We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.展开更多
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
In this paper,quadratic 0-1 programming problem (I) is considered, in terms of its features quadratic 0-1 programming problem is solved by linear approxity heurstic algrothm and a developed tabu search ahgrothm .
A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization m...A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.展开更多
In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above...In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.展开更多
In this paper, we study linear static Stac kelberg problems with multiple leaders-followers in which each decision maker wi thin his group may or may not cooperate. An exact penalty function method is dev eloped. The ...In this paper, we study linear static Stac kelberg problems with multiple leaders-followers in which each decision maker wi thin his group may or may not cooperate. An exact penalty function method is dev eloped. The duality gaps of the followers’ problems are appended to the leaders’ objective function with a penalty. The structure leads to the decomposition of the composite problem into a series of linear programmings leading to an efficie nt algorithm. We prove that local optimality is reached for an exact penalty fun ction and illustrate the method with three examples. The model in this paper ext ends the stackelberg leader-follower model.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.12071133 and 11871196).
文摘In this paper,we study the minimax linear fractional programming problem on a non-empty bounded set,called problem(MLFP),and we design a branch and bound algorithm to find a globally optimal solution of(MLFP).Firstly,we convert the problem(MLFP)to a problem(EP2)that is equivalent to it.Secondly,by applying the convex relaxation technique to problem(EP2),a convex quadratic relaxation problem(CQRP)is obtained.Then,the overall framework of the algorithm is given and its convergence is proved,the worst-case iteration number is also estimated.Finally,experimental data are listed to illustrate the effectiveness of the algorithm.
基金Supported by the National Natural Science Foundation of China(71103034)the Natural Science Foundation of Jiangsu Province(bk2011084)
文摘To improve the efficiency of gate reassignment and optimize the plan of gate reassignment,the concept of disruption management is introduced,and a multi-objective programming model for airport gate reassignment is proposed.Considering the interests of passengers and the airport,the model minimizes the total flight delay,the total passengers′walking distance and the number of flights reassigned to other gates different from the planned ones.According to the characteristics of the gate reassignment,the model is simplified.As the multi-objective programming model is hard to reach the optimal solutions simultaneously,a threshold of satisfactory solutions of the model is set.Then a simulated annealing algorithm is designed for the model.Case studies show that the model decreases the total flight delay to the satisfactory solutions,and minimizes the total passengers′walking distance.The least change of planned assignment is also reached.The results achieve the goals of disruption management.Therefore,the model is verified to be effective.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2013CB329005
文摘Network virtualization is known as a promising technology to tackle the ossification of current Internet and will play an important role in the future network area. Virtual network embedding(VNE) is a key issue in network virtualization. VNE is NP-hard and former VNE algorithms are mostly heuristic in the literature.VNE exact algorithms have been developed in recent years. However, the constraints of exact VNE are only node capacity and link bandwidth.Based on these, this paper presents an exact VNE algorithm, ILP-LC, which is based on Integer Linear Programming(ILP), for embedding virtual network request with location constraints. This novel algorithm is aiming at mapping virtual network request(VNR) successfully as many as possible and consuming less substrate resources.The topology of each VNR is randomly generated by Waxman model. Simulation results show that the proposed ILP-LC algorithm outperforms the typical heuristic algorithms in terms of the VNR acceptance ratio, at least 15%.
基金supported by the NSFC(U1536206,61232016,U1405254,61373133,61502242,71401176)BK20150925the PAPD fund
文摘Barrier coverage of wireless sensor networks is an important issue in the detection of intruders who are attempting to cross a region of interest.However,in certain applications,barrier coverage cannot be satisfied after random deployment.In this paper,we study how mobile sensors can be efficiently relocated to achieve k-barrier coverage.In particular,two problems are studied:relocation of sensors with minimum number of mobile sensors and formation of k-barrier coverage with minimum energy cost.These two problems were formulated as 0–1 integer linear programming(ILP).The formulation is computationally intractable because of integrality and complicated constraints.Therefore,we relax the integrality and complicated constraints of the formulation and construct a special model known as RELAX-RSMN with a totally unimodular constraint coefficient matrix to solve the relaxed 0–1 ILP rapidly through linear programming.Theoretical analysis and simulation were performed to verify the effectiveness of our approach.
基金Supported by the Natural Science Foundation of Henan Province(0511012000 0511013600) Supported by the Science Foundation for Pure Research of Natural Science of the Education Department of Henan Province(200512950001)
文摘In this article,the authors discuss the optimal conditions of the linear fractionalprogramming problem and prove that a locally optional solution is a globally optional solution and the locally optimal solution can be attained at a basic feasible solution withconstraint condition.
文摘A new heuristic algorithm is proposed for solving general integer linear programming problems. In the algorithm, the objective function hyperplane is used as a cutting plane, and then by introducing a special set of assistant sets, an efficient heuristic search for the solution to the integer linear program is carried out in the sets on the objective function hyperplane. A simple numerical example shows that the algorithm is efficient for some problems, and therefore, of practical interest.
基金Supported by the National Natural Science Foundation of China(11471102,61301229)Supported by the Natural Science Foundation of Henan University of Science and Technology(2014QN039)
文摘We establish polynomial complexity corrector algorithms for linear programming over bounds of the Mehrotra-type predictor- symmetric cones. We first slightly modify the maximum step size in the predictor step of the safeguard based Mehrotra-type algorithm for linear programming, that was proposed by Salahi et al. Then, using the machinery of Euclidean Jordan algebras, we extend the modified algorithm to symmetric cones. Based on the Nesterov-Todd direction, we obtain O(r log ε1) iteration complexity bound of this algorithm, where r is the rank of the Jordan algebras and ε is the required precision. We also present a new variant of Mehrotra-type algorithm using a new adaptive updating scheme of centering parameter and show that this algorithm enjoys the same order of complexity bound as the safeguard algorithm. We illustrate the numerical behaviour of the methods on some small examples.
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
文摘In this paper,quadratic 0-1 programming problem (I) is considered, in terms of its features quadratic 0-1 programming problem is solved by linear approxity heurstic algrothm and a developed tabu search ahgrothm .
基金Sponsored by the National Natural Science Foundation of China (70471063)
文摘A new prioritization method in the analytic hierarchy process (AHP), which improves the group fuzzy preference programming (GFPP) method, is proposed. The fuzzy random theory is applied in the new prioritization method. By modifying the principle of decision making implied in the GFPP method, the improved group fuzzy preference programming (IGFPP) method is formulated as a fuzzy linear programming problem to maximize the average degree of the group satisfaction with all possible group priority vectors. The IGFPP method inherits the advantages of the GFPP method, and solves the weighting trouble existed in the GFPP method. Numerical tests indicate that the IGFPP method performs more effectively than the GFPP method in the case of very contradictive comparison judgments from decision makers.
文摘In this paper, we consider the socalled k-coloring problem in general case.Firstly, a special quadratic 0-1 programming is constructed to formulate k-coloring problem. Secondly, by use of the equivalence between above quadratic0-1 programming and its relaxed problem, k-coloring problem is converted intoa class of (continuous) nonconvex quadratic programs, and several theoreticresults are also introduced. Thirdly, linear programming approximate algorithmis quoted and verified for this class of nonconvex quadratic programs. Finally,examining problems which are used to test the algorithm are constructed andsufficient computation experiments are reported.
文摘In this paper, we study linear static Stac kelberg problems with multiple leaders-followers in which each decision maker wi thin his group may or may not cooperate. An exact penalty function method is dev eloped. The duality gaps of the followers’ problems are appended to the leaders’ objective function with a penalty. The structure leads to the decomposition of the composite problem into a series of linear programmings leading to an efficie nt algorithm. We prove that local optimality is reached for an exact penalty fun ction and illustrate the method with three examples. The model in this paper ext ends the stackelberg leader-follower model.