To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description ab...To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.展开更多
A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy glob...A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.展开更多
In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory opti...In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.展开更多
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element ...This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.展开更多
As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimizat...As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.展开更多
To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solutio...To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery.展开更多
针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为...针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为降低专家的主观偏差,应用基于层级的模糊权重评估(Fuzzy level based weight assessment,FLBWA)法来计算各评价指标权重;继而结合改进的Borda-全乘比例多目标优化(Borda-multi-objective optimization on the basis of ratio analysis plus full multiplicative form,Borda-MULTIMOORA)法计算开发适宜性指数,从而能够更加准确、高效地得到评价结果;之后,基于灰狼优化算法的反向传播(Grey wolf optimizer with back propagation,GWO-BP)神经网络构建并训练智能模型,将适宜性分析转化为自动化、高效化和智能化的过程;最后,以山东省风浪联合开发区划为例验证该模型的可行性和合理性。根据实例验证,该模型可以实现风浪联合开发区划的智能化,为相关领域的研究和政府规划提供参考。展开更多
生态环境修复方案的可行性论证与修复效果评价是生态环境修复工程的重要内容,对生态环境修复工程的设计及建设具有重要指导意义。目的为确定生态环境修复方案可行性和修复的综合效果,以盘石头水库为例,对该水库生态修复方案进行综合评...生态环境修复方案的可行性论证与修复效果评价是生态环境修复工程的重要内容,对生态环境修复工程的设计及建设具有重要指导意义。目的为确定生态环境修复方案可行性和修复的综合效果,以盘石头水库为例,对该水库生态修复方案进行综合评价研究。方法首先,参照OECD(Organization for Economic Cooperation and Development)模型,构建由生态效益、景观效益、社会效益、维护管理共4个准则层和18个评价子指标组成的盘石头水库生态环境修复方案可行性和修复效果评价体系;其次,通过最优传递矩阵对层次分析法的权重计算进行改进,对构建的评价指标体系进行权重的计算;最后,将改进AHP与模糊综合评价方法相结合,对盘石头水库生态修复方案进行综合评价。结果结果表明,在盘石头水库生态环境修复方案中最重要的准则层指标是生态效益;在选取的18个评价子指标中,物种多样性、观赏价值、改善城市形象和降低灾害这4个指标的权重较大;所评价的鹤壁市盘石头水库生态环境修复方案的修复效果为优,方案可行。结论模糊-改进AHP法为生态环境修复及其方案可行性的评价提供了一种新的、更有效的方法。展开更多
文摘To assist readers to have a comprehensive understanding, the classical and intelligent methods roundly based on precursory research achievements are summarized in this paper. First, basic conception and description about multi-objective (MO) optimization are introduced. Then some definitions and related terminologies are given. Furthermore several MO optimization methods including classical and current intelligent methods are discussed one by one succinctly. Finally evaluations on advantages and disadvantages about these methods are made at the end of the paper.
基金the National Natural Science Foundations of China (60873099 )
文摘A fuzzy particle swarm optimization (PSO) on the basis of elite archiving is proposed for solving multi-objective optimization problems. First, a new perturbation operator is designed, and the concepts of fuzzy global best and fuzzy personal best are given on basis of the new operator. After that, particle updating equations are revised on the basis of the two new concepts to discourage the premature convergence and enlarge the potential search space; second, the elite archiving technique is used during the process of evolution, namely, the elite particles are introduced into the swarm, whereas the inferior particles are deleted. Therefore, the quality of the swarm is ensured. Finally, the convergence of this swarm is proved. The experimental results show that the nondominated solutions found by the proposed algorithm are uniformly distributed and widely spread along the Pareto front.
基金supported by the Natural Science Foundation of Tianjin(12JCZDJC30300)the Research Foundation of Tianjin Key Laboratory of Process Measurement and Control(TKLPMC-201613)the State Scholarship Fund of China
文摘In the constrained reentry trajectory design of hypersonic vehicles, multiple objectives with priorities bring about more difficulties to find the optimal solution. Therefore, a multi-objective reentry trajectory optimization (MORTO) approach via generalized varying domain (GVD) is proposed. Using the direct collocation approach, the trajectory optimization problem involving multiple objectives is discretized into a nonlinear multi-objective programming with priorities. In terms of fuzzy sets, the objectives are fuzzified into three types of fuzzy goals, and their constant tolerances are substituted by the varying domains. According to the principle that the objective with higher priority has higher satisfactory degree, the priority requirement is modeled as the order constraints of the varying domains. The corresponding two-side, single-side, and hybrid-side varying domain models are formulated for three fuzzy relations respectively. By regulating the parameter, the optimal reentry trajectory satisfying priorities can be achieved. Moreover, the performance about the parameter is analyzed, and the algorithm to find its specific value for maximum priority difference is proposed. The simulations demonstrate the effectiveness of the proposed method for hypersonic vehicles, and the comparisons with the traditional methods and sensitivity analysis are presented.
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
文摘This paper puts forward a new integrated design met ho d based on fuzzy matter-element optimization.On the based of analyzing the mod el of multi-objective fuzzy matter-element , the paper defines the m atter-element weightily and changes solving multi-objective fuzzy optimization into solving dependent function K(x) of the single-objective optimization according to the optimization criterion. The paper particularly describes the realization approach of GA process of multi -objective fuzzy matter-element optimization: encode, produce initial populati on, confirm fitness function, select operator, etc. In the process, the adaptive macro genetic algorithms (AMGA) is applied to enhancing the evolution speed. Th e paper improves the two genetic operators: crossover and mutation operator. The modified adaptive macro genetic algorithms (MAMGA) is put forward simultane ously. It is adopted to solve the optimization problem. Three optimization methods, namely fuzzy matter-element optimization method, li nearity weighted method and fuzzy optimization method, are compared by using the table and figure, it shows that not only MAMGA is a little better than the AMGA , but also it reaches the extent to which the effective iteration generation is 62.2% of simple genetic algorithms (SGA). By the calculation of optimum exam ple, the improved method of genetic in the paper is much better than the method in reference of paper.
基金supported by the National Natural Science Foundation of China(60873099)the Fundamental Research Funds for the Central Universities(2011QNA29)
文摘As a new-style stochastic algorithm, the electromagnetism-like mechanism(EM) method gains more and more attention from many researchers in recent years. A novel model based on EM(NMEM) for multiobjective optimization problems is proposed, which regards the charge of all particles as the constraints in the current population and the measure of the uniformity of non-dominated solutions as the objective function. The charge of the particle is evaluated based on the dominated concept, and its magnitude determines the direction of a force between two particles. Numerical studies are carried out on six complex test functions and the experimental results demonstrate that the proposed NMEM algorithm is a very robust method for solving the multiobjective optimization problems.
基金National Natural Science Foundation of China(51609107)Open Subject of Provincial and Ministerial Discipline Platform of Xihua University(szjj2018-123)。
文摘To increase the robustness of the optimization solutions of the mixed-flow pump,the impeller was firstly indirectly parameterized based on the 2D blade design theory.Secondly,the robustness of the optimization solution was mathematically defined,and then calculated by Monte Carlo sampling method.Thirdly,the optimization on the mixed-flow pump′s impeller was decomposed into the optimal and robust sub-optimization problems,to maximize the pump head and efficiency and minimize the fluctuation degree of them under varying working conditions at the same time.Fourthly,using response surface model,a surrogate model was established between the optimization objectives and control variables of the shape of the impeller.Finally,based on a multi-objective genetic optimization algorithm,a two-loop iterative optimization process was designed to find the optimal solution with good robustness.Comparing the original and optimized pump,it is found that the internal flow field of the optimized pump has been improved under various operating conditions,the hydraulic performance has been improved consequently,and the range of high efficient zone has also been widened.Besides,with the changing of working conditions,the change trend of the hydraulic performance of the optimized pump becomes gentler,the flow field distribution is more uniform,and the influence degree of the varia-tion of working conditions decreases,and the operating stability of the pump is improved.It is concluded that the robust optimization method proposed in this paper is a reasonable way to optimize the mixed-flow pump,and provides references for optimization problems of other fluid machinery.
文摘针对目前海洋能区划研究中存在的计算复杂、耗时长和成本高等问题,本研究基于改进的多准则决策(Multiple criteria decision making,MCDM)方法和人工神经网络(Artificial neural network,ANN),提出了一种风浪联合开发区划智能模型。为降低专家的主观偏差,应用基于层级的模糊权重评估(Fuzzy level based weight assessment,FLBWA)法来计算各评价指标权重;继而结合改进的Borda-全乘比例多目标优化(Borda-multi-objective optimization on the basis of ratio analysis plus full multiplicative form,Borda-MULTIMOORA)法计算开发适宜性指数,从而能够更加准确、高效地得到评价结果;之后,基于灰狼优化算法的反向传播(Grey wolf optimizer with back propagation,GWO-BP)神经网络构建并训练智能模型,将适宜性分析转化为自动化、高效化和智能化的过程;最后,以山东省风浪联合开发区划为例验证该模型的可行性和合理性。根据实例验证,该模型可以实现风浪联合开发区划的智能化,为相关领域的研究和政府规划提供参考。
文摘生态环境修复方案的可行性论证与修复效果评价是生态环境修复工程的重要内容,对生态环境修复工程的设计及建设具有重要指导意义。目的为确定生态环境修复方案可行性和修复的综合效果,以盘石头水库为例,对该水库生态修复方案进行综合评价研究。方法首先,参照OECD(Organization for Economic Cooperation and Development)模型,构建由生态效益、景观效益、社会效益、维护管理共4个准则层和18个评价子指标组成的盘石头水库生态环境修复方案可行性和修复效果评价体系;其次,通过最优传递矩阵对层次分析法的权重计算进行改进,对构建的评价指标体系进行权重的计算;最后,将改进AHP与模糊综合评价方法相结合,对盘石头水库生态修复方案进行综合评价。结果结果表明,在盘石头水库生态环境修复方案中最重要的准则层指标是生态效益;在选取的18个评价子指标中,物种多样性、观赏价值、改善城市形象和降低灾害这4个指标的权重较大;所评价的鹤壁市盘石头水库生态环境修复方案的修复效果为优,方案可行。结论模糊-改进AHP法为生态环境修复及其方案可行性的评价提供了一种新的、更有效的方法。