An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain varia...An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.展开更多
To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the result...To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.展开更多
Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level progra...Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Data envelopment analysis(DEA) is a mathematical programming approach to appraise the relative efficiencies of peer decision-making unit(DMU),which is widely used in ranking DMUs.However,almost all DEA-related ran...Data envelopment analysis(DEA) is a mathematical programming approach to appraise the relative efficiencies of peer decision-making unit(DMU),which is widely used in ranking DMUs.However,almost all DEA-related ranking approaches are based on the self-evaluation efficiencies.In other words,each DMU chooses the weights it prefers to most,so the resulted efficiencies are not suitable to be used as ranking criteria.Therefore this paper proposes a new approach to determine a bundle of common weights in DEA efficiency evaluation model by introducing a multi-objective integer programming.The paper also gives the solving process of this multi-objective integer programming,and the solution is proven a Pareto efficient solution.The solving process ensures that the obtained common weight bundle is acceptable by a great number of DMUs.Finally a numeral example is given to demonstrate the approach.展开更多
In order to evaluate and integrate travel time reliability and capacity reliability of a road network subjected to ice and snowfall conditions,the conceptions of travel time reliability and capacity reliability were d...In order to evaluate and integrate travel time reliability and capacity reliability of a road network subjected to ice and snowfall conditions,the conceptions of travel time reliability and capacity reliability were defined under special conditions.The link travel time model(ice and snowfall based-bureau public road,ISB-BPR) and the path choice decision model(elastic demand user equilibrium,EDUE) were proposed.The integrated reliability was defined and the model was set up.Monte Carlo simulation was used to calculate the model and a numerical example was provided to demonstrate the application of the model and efficiency of the solution algorithm.The results show that the intensity of ice and snowfall,the traffic demand and supply,and the requirements for level of service(LOS) have great influence on the reliability of a road network.For example,the reliability drops from 65% to 5% when the traffic demand increases by 30%.The comprehensive performance index may be used for network planning,design and maintenance.展开更多
Weapon system portfolio selection is an important combinatorial problem that arises in various applications,such as weapons development planning and equipment procurement,which are of concern to military decision make...Weapon system portfolio selection is an important combinatorial problem that arises in various applications,such as weapons development planning and equipment procurement,which are of concern to military decision makers.However,the existing weapon system-of-systems(SoS)is tightly coupled.Because of the diversity and connectivity of mission requirements,it is difficult to describe the direct mapping relationship from the mission to the weapon system.In the latest service-oriented research,the introduction of service modules to build a service-oriented,flexible,and combinable structure is an important trend.This paper proposes a service-oriented weapon system portfolio selection method,by introducing service to serve as an intermediary to connect missions and system selection,and transferring the weapon system selection into the service portfolio selection.Specifically,the relation between the service and the task is described through the service-task mapping matrix;and the relation between the service and the weapon system is constructed through the servicesystem mapping matrix.The service collaboration network to calculate the flexibility and connectivity of each service portfolio is then established.Through multi-objective programming,the optimal service portfolios are generated,which are further decoded into weapon system portfolios.展开更多
An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level progr...An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.展开更多
基金supported by the National Natural Science Foundation of China(71601183 71571190)
文摘An uncertain multi-objective programming problem is a special type of mathematical multi-objective programming involving uncertain variables. This type of problem is important because there are several uncertain variables in real-world problems.Therefore, research on the uncertain multi-objective programming problem is highly relevant, particularly those problems whose objective functions are correlated. In this paper, an approach that solves an uncertain multi-objective programming problem under the expected-variance value criterion is proposed. First, we define the basic framework of the approach and review concepts such as a Pareto efficient solution and expected-variance value criterion using an order relation between various uncertain variables.Second, the uncertain multi-objective problem is converted into an uncertain single-objective programming problem via a linear weighted method or ideal point method. Then the problem is transformed into a deterministic single objective programming problem under the expected-variance value criterion. Third, four lemmas and two theorems are proved to illustrate that the optimal solution of the deterministic single-objective programming problem is an efficient solution to the original uncertainty problem. Finally, two numerical examples are presented to validate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China(72001213)the basic research program of Natural Science of Shaanxi Province,China(2021JQ-369).
文摘To overcome the defects that the traditional ap-proach for multi-objective programming under uncertain ran-dom environment(URMOP)neglects the randomness and uncer-tainty of the problem and the volatility of the results,a new ap-proach is proposed based on expected value-standard devi-ation value criterion(C_(ESD) criterion).Firstly,the effective solution to the URMOP problem is defined;then,by applying sequence relationship between the uncertain random variables,the UR-MOP problem is transformed into a single-objective program-ming(SOP)under uncertain random environment(URSOP),which are transformed into a deterministic counterpart based on the C_(ESD) criterion.Then the validity of the new approach is proved that the optimal solution to the SOP problem is also effi-cient for the URMOP problem;finally,a numerical example and a case application are presented to show the effectiveness of the new approach.
基金Project(2006CB705507) supported by the National Basic Research and Development Program of ChinaProject(20060533036) supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘Considering the decision-making variables of the capacities of branch roads and the optimization targets of lowering the saturation of arterial roads and the reconstruction expense of branch roads, the bi-level programming model for reconstructing the branch roads was set up. The upper level model was for determining the enlarged capacities of the branch roads, and the lower level model was for calculating the flows of road sections via the user equilibrium traffic assignment method. The genetic algorithm for solving the bi-level model was designed to obtain the reconstruction capacities of the branch roads. The results show that by the bi-level model and its algorithm, the optimum scheme of urban branch roads reconstruction can be gained, which reduces the saturation of arterial roads apparently, and alleviates traffic congestion. In the data analysis the arterial saturation decreases from 1.100 to 0.996, which verifies the micro-circulation transportation's function of urban branch road network.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金supported by the National Natural Science Foundation of China for Innovative Research Groups(70821001)and the National Natural Science Foundation of China(70801056)
文摘Data envelopment analysis(DEA) is a mathematical programming approach to appraise the relative efficiencies of peer decision-making unit(DMU),which is widely used in ranking DMUs.However,almost all DEA-related ranking approaches are based on the self-evaluation efficiencies.In other words,each DMU chooses the weights it prefers to most,so the resulted efficiencies are not suitable to be used as ranking criteria.Therefore this paper proposes a new approach to determine a bundle of common weights in DEA efficiency evaluation model by introducing a multi-objective integer programming.The paper also gives the solving process of this multi-objective integer programming,and the solution is proven a Pareto efficient solution.The solving process ensures that the obtained common weight bundle is acceptable by a great number of DMUs.Finally a numeral example is given to demonstrate the approach.
基金Project(E200940) supported by the Natural Science Foundation of Heilongjiang Province, ChinaProject(2009GC20008020) supported by the Technology Research and Development Program of Shandong Province, China
文摘In order to evaluate and integrate travel time reliability and capacity reliability of a road network subjected to ice and snowfall conditions,the conceptions of travel time reliability and capacity reliability were defined under special conditions.The link travel time model(ice and snowfall based-bureau public road,ISB-BPR) and the path choice decision model(elastic demand user equilibrium,EDUE) were proposed.The integrated reliability was defined and the model was set up.Monte Carlo simulation was used to calculate the model and a numerical example was provided to demonstrate the application of the model and efficiency of the solution algorithm.The results show that the intensity of ice and snowfall,the traffic demand and supply,and the requirements for level of service(LOS) have great influence on the reliability of a road network.For example,the reliability drops from 65% to 5% when the traffic demand increases by 30%.The comprehensive performance index may be used for network planning,design and maintenance.
基金the National Key R&D Program of China(2017YFC1405005)the National Natural Science Foundation of China(71901214,71690233).
文摘Weapon system portfolio selection is an important combinatorial problem that arises in various applications,such as weapons development planning and equipment procurement,which are of concern to military decision makers.However,the existing weapon system-of-systems(SoS)is tightly coupled.Because of the diversity and connectivity of mission requirements,it is difficult to describe the direct mapping relationship from the mission to the weapon system.In the latest service-oriented research,the introduction of service modules to build a service-oriented,flexible,and combinable structure is an important trend.This paper proposes a service-oriented weapon system portfolio selection method,by introducing service to serve as an intermediary to connect missions and system selection,and transferring the weapon system selection into the service portfolio selection.Specifically,the relation between the service and the task is described through the service-task mapping matrix;and the relation between the service and the weapon system is constructed through the servicesystem mapping matrix.The service collaboration network to calculate the flexibility and connectivity of each service portfolio is then established.Through multi-objective programming,the optimal service portfolios are generated,which are further decoded into weapon system portfolios.
基金Projects(71171200,51108465,71101155)supported by the National Natural Science Foundation of China
文摘An optimization model and its solution algorithm for alternate traffic restriction(ATR) schemes were introduced in terms of both the restriction districts and the proportion of restricted automobiles. A bi-level programming model was proposed to model the ATR scheme optimization problem by aiming at consumer surplus maximization and overload flow minimization at the upper-level model. At the lower-level model, elastic demand, mode choice and multi-class user equilibrium assignment were synthetically optimized. A genetic algorithm involving prolonging codes was constructed, demonstrating high computing efficiency in that it dynamically includes newly-appearing overload links in the codes so as to reduce the subsequent searching range. Moreover,practical processing approaches were suggested, which may improve the operability of the model-based solutions.