期刊文献+
共找到78,732篇文章
< 1 2 250 >
每页显示 20 50 100
A reduced combustion mechanism of ammonia/diesel optimized with multi-objective genetic algorithm 被引量:1
1
作者 Wanchen Sun Shaodian Lin +4 位作者 Hao Zhang Liang Guo Wenpeng Zeng Genan Zhu Mengqi Jiang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期187-200,共14页
For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based ... For the deep understanding on combustion of ammonia/diesel,this study develops a reduced mechanism of ammonia/diesel with 227 species and 937 reactions.The sub-mechanism on ammonia/interactions of N-based and C-based species(N—C)/NOx is optimized using the Non-dominated Sorting Genetic Algorithm II(NSGA-II)with 200 generations.The optimized mechanism(named as 937b)is validated against combustion characteristics of ammonia/methane(which is used to examine the accuracy of N—C interactions)and ammonia/diesel blends.The ignition delay times(IDTs),the laminar flame speeds and most of key intermediate species during the combustion of ammonia/methane blends can be accurately simulated by 937b under a wide range of conditions.As for ammonia/diesel blends with various diesel energy fractions,reasonable predictions on the IDTs under pressures from 1.0 MPa to5.0 MPa as well as the laminar flame speeds are also achieved by 937b.In particular,with regard to the IDT simulations of ammonia/diesel blends,937b makes progress in both aspects of overall accuracy and computational efficiency,compared to a detailed ammonia/diesel mechanism.Further kinetic analysis reveals that the reaction pathway of ammonia during the combustion of ammonia/diesel blend mainly differs in the tendencies of oxygen additions to NH_2 and NH with different equivalence ratios. 展开更多
关键词 AMMONIA DIESEL COMBUSTION Kinetic mechanism multi-objective optimization
在线阅读 下载PDF
Review on Multi-objective Dynamic Scheduling Methods for Flexible Job Shops and Application in Aviation Manufacturing
2
作者 MA Yajie JIANG Bin +3 位作者 GUAN Li CHEN Lijun HUANG Binda CHEN Zhi 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期1-24,共24页
Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of in... Intelligent production is an important development direction in intelligent manufacturing,with intelligent factories playing a crucial role in promoting intelligent production.Flexible job shops,as the main form of intelligent factories,constantly face dynamic disturbances during the production process,including machine failures and urgent orders.This paper discusses the basic models and research methods of job shop scheduling,emphasizing the important role of dynamic job shop scheduling and its response schemes in future research.A multi-objective flexible job shop dynamic scheduling mathematical model is established,highlighting its complex and multi-constraint characteristics under different interferences.A classification discussion is conducted on the dynamic response methods and optimization objectives under machine failures,emergency orders,fuzzy completion times,and mixed dynamic events.The development process of traditional scheduling rules and intelligent methods in dynamic scheduling are also analyzed.Finally,based on the current development status of job shop scheduling and the requirements of intelligent manufacturing,the future development trends of dynamic scheduling in flexible job shops are proposed. 展开更多
关键词 flexible job shop dynamic scheduling machine breakdown job insertion multi-objective optimization
在线阅读 下载PDF
Resilient multi-objective mission planning for UAV formation:A unified framework integrating task pre-and re-assignment
3
作者 Xinwei Wang Xiaohua Gao +4 位作者 Lei Wang Xichao Su Junhong Jin Xuanbo Liu Zhilong Deng 《Defence Technology(防务技术)》 2025年第3期203-226,共24页
Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed o... Combat effectiveness of unmanned aerial vehicle(UAV)formations can be severely affected by the mission execution reliability.During the practical execution phase,there are inevitable risks where UAVs being destroyed or targets failed to be executed.To improve the mission reliability,a resilient mission planning framework integrates task pre-and re-assignment modules is developed in this paper.In the task pre-assignment phase,to guarantee the mission reliability,probability constraints regarding the minimum mission success rate are imposed to establish a multi-objective optimization model.And an improved genetic algorithm with the multi-population mechanism and specifically designed evolutionary operators is used for efficient solution.As in the task-reassignment phase,possible trigger events are first analyzed.A real-time contract net protocol-based algorithm is then proposed to address the corresponding emergency scenario.And the dual objective used in the former phase is adapted into a single objective to keep a consistent combat intention.Three cases of different scales demonstrate that the two modules cooperate well with each other.On the one hand,the pre-assignment module can generate high-reliability mission schedules as an elaborate mathematical model is introduced.On the other hand,the re-assignment module can efficiently respond to various emergencies and adjust the original schedule within a millisecond.The corresponding animation is accessible at bilibili.com/video/BV12t421w7EE for better illustration. 展开更多
关键词 Cooperative mission planning UAV formation Mission reliability Evolutionary algorithm Contract net protocol
在线阅读 下载PDF
Hybrid Prairie Dog and Beluga Whale Optimization Algorithm for Multi-Objective Load Balanced-Task Scheduling in Cloud Computing Environments
4
作者 K Ramya Senthilselvi Ayothi 《China Communications》 SCIE CSCD 2024年第7期307-324,共18页
The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource pr... The cloud computing technology is utilized for achieving resource utilization of remotebased virtual computer to facilitate the consumers with rapid and accurate massive data services.It utilizes on-demand resource provisioning,but the necessitated constraints of rapid turnaround time,minimal execution cost,high rate of resource utilization and limited makespan transforms the Load Balancing(LB)process-based Task Scheduling(TS)problem into an NP-hard optimization issue.In this paper,Hybrid Prairie Dog and Beluga Whale Optimization Algorithm(HPDBWOA)is propounded for precise mapping of tasks to virtual machines with the due objective of addressing the dynamic nature of cloud environment.This capability of HPDBWOA helps in decreasing the SLA violations and Makespan with optimal resource management.It is modelled as a scheduling strategy which utilizes the merits of PDOA and BWOA for attaining reactive decisions making with respect to the process of assigning the tasks to virtual resources by considering their priorities into account.It addresses the problem of pre-convergence with wellbalanced exploration and exploitation to attain necessitated Quality of Service(QoS)for minimizing the waiting time incurred during TS process.It further balanced exploration and exploitation rates for reducing the makespan during the task allocation with complete awareness of VM state.The results of the proposed HPDBWOA confirmed minimized energy utilization of 32.18% and reduced cost of 28.94% better than approaches used for investigation.The statistical investigation of the proposed HPDBWOA conducted using ANOVA confirmed its efficacy over the benchmarked systems in terms of throughput,system,and response time. 展开更多
关键词 Beluga Whale Optimization algorithm(BWOA) cloud computing Improved Hopcroft-Karp algorithm Infrastructure as a Service(IaaS) Prairie Dog Optimization algorithm(PDOA) Virtual Machine(VM)
在线阅读 下载PDF
HYBRID MULTI-OBJECTIVE GRADIENT ALGORITHM FOR INVERSE PLANNING OF IMRT
5
作者 李国丽 盛大宁 +3 位作者 王俊椋 景佳 王超 闫冰 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2010年第1期97-101,共5页
The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an... The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications. 展开更多
关键词 gradient methods inverse planning multi-objective optimization hybrid gradient algorithm
在线阅读 下载PDF
INTEGRATED OPERATOR GENETIC ALGORITHM FOR SOLVING MULTI-OBJECTIVE FLEXIBLE JOB-SHOP SCHEDULING
6
作者 袁坤 朱剑英 +1 位作者 鞠全勇 王有远 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期278-282,共5页
In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objectiv... In the flexible job-shop scheduling problem (FJSP), each operation has to be assigned to a machine from a set of capable machines before alocating the assigned operations on all machines. To solve the multi-objective FJSP, the Grantt graph oriented string representation (GOSR) and the basic manipulation of the genetic algorithm operator are presented. An integrated operator genetic algorithm (IOGA) and its process are described. Comparison between computational results and the latest research shows that the proposed algorithm is effective in reducing the total workload of all machines, the makespan and the critical machine workload. 展开更多
关键词 flexible job-shop integrated operator genetic algorithm multi-objective optimization job-shop scheduling
在线阅读 下载PDF
Multi-objective optimization and evaluation of supercritical CO_(2) Brayton cycle for nuclear power generation 被引量:2
7
作者 Guo-Peng Yu Yong-Feng Cheng +1 位作者 Na Zhang Ping-Jian Ming 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期183-209,共27页
The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayto... The supercritical CO_(2) Brayton cycle is considered a promising energy conversion system for Generation IV reactors for its simple layout,compact structure,and high cycle efficiency.Mathematical models of four Brayton cycle layouts are developed in this study for different reactors to reduce the cost and increase the thermohydraulic performance of nuclear power generation to promote the commercialization of nuclear energy.Parametric analysis,multi-objective optimizations,and four decision-making methods are applied to obtain each Brayton scheme’s optimal thermohydraulic and economic indexes.Results show that for the same design thermal power scale of reactors,the higher the core’s exit temperature,the better the Brayton cycle’s thermo-economic performance.Among the four-cycle layouts,the recompression cycle(RC)has the best overall performance,followed by the simple recuperation cycle(SR)and the intercooling cycle(IC),and the worst is the reheating cycle(RH).However,RH has the lowest total cost of investment(C_(tot))of$1619.85 million,and IC has the lowest levelized cost of energy(LCOE)of 0.012$/(kWh).The nuclear Brayton cycle system’s overall performance has been improved due to optimization.The performance of the molten salt reactor combined with the intercooling cycle(MSR-IC)scheme has the greatest improvement,with the net output power(W_(net)),thermal efficiencyη_(t),and exergy efficiency(η_(e))improved by 8.58%,8.58%,and 11.21%,respectively.The performance of the lead-cooled fast reactor combined with the simple recuperation cycle scheme was optimized to increase C_(tot) by 27.78%.In comparison,the internal rate of return(IRR)increased by only 7.8%,which is not friendly to investors with limited funds.For the nuclear Brayton cycle,the molten salt reactor combined with the recompression cycle scheme should receive priority,and the gas-cooled fast reactor combined with the reheating cycle scheme should be considered carefully. 展开更多
关键词 Supercritical CO_(2)Brayton cycle Nuclear power generation Thermo-economic analysis multi-objective optimization Decision-making methods
在线阅读 下载PDF
Multi-objective optimization of oil well drilling using elitist non-dominated sorting genetic algorithm 被引量:12
8
作者 Chandan Guria Kiran K Goli Akhilendra K Pathak 《Petroleum Science》 SCIE CAS CSCD 2014年第1期97-110,共14页
A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered f... A multi-objective optimization of oil well drilling has been carried out using a binary coded elitist non-dominated sorting genetic algorithm.A Louisiana offshore field with abnormal formation pressure is considered for optimization.Several multi-objective optimization problems involving twoand three-objective functions were formulated and solved to fix optimal drilling variables.The important objectives are:(i) maximizing drilling depth,(ii) minimizing drilling time and (iii) minimizing drilling cost with fractional drill bit tooth wear as a constraint.Important time dependent decision variables are:(i) equivalent circulation mud density,(ii) drill bit rotation,(iii) weight on bit and (iv) Reynolds number function of circulating mud through drill bit nozzles.A set of non-dominated optimal Pareto frontier is obtained for the two-objective optimization problem whereas a non-dominated optimal Pareto surface is obtained for the three-objective optimization problem.Depending on the trade-offs involved,decision makers may select any point from the optimal Pareto frontier or optimal Pareto surface and hence corresponding values of the decision variables that may be selected for optimal drilling operation.For minimizing drilling time and drilling cost,the optimum values of the decision variables are needed to be kept at the higher values whereas the optimum values of decision variables are at the lower values for the maximization of drilling depth. 展开更多
关键词 Drilling performance rate of penetration abnormal pore pressure genetic algorithm multi-objective optimization
在线阅读 下载PDF
A performance comparison of multi-objective optimization algorithms for solving nearly-zero-energy-building design problems 被引量:8
9
作者 Mohamed Hamdy Anh-Tuan Nguyen +1 位作者 Jan L.M. Hensen 侯恩哲 《建筑节能》 CAS 2016年第6期4-4,共1页
Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms hav... Integrated building design is inherently a multi-objective optimization problem where two or more conflicting objectives must be minimized and/or maximized concurrently.Many multi-objective optimization algorithms have been developed;however few of them are tested in solving building design problems.This paper compares performance of seven commonly-used multi-objective evolutionary optimization algorithms in solving the design problem of a nearly zero energy building(n ZEB) where more than 1.610 solutions would be possible.The compared algorithms include a controlled non-dominated sorting genetic algorithm witha passive archive(p NSGA-II),a multi-objective particle swarm optimization(MOPSO),a two-phase optimization using the genetic algorithm(PR_GA),an elitist non-dominated sorting evolution strategy(ENSES),a multi-objective evolutionary algorithm based on the concept of epsilon dominance(ev MOGA),a multi-objective differential evolution algorithm(sp MODE-II),and a multi-objective dragonfly algorithm(MODA).Several criteria was used to compare performance of these algorithms.In most cases,the quality of the obtained solutions was improved when the number of generations was increased.The optimization results of running each algorithm20 times with gradually increasing number of evaluations indicated that the PR_GA algorithm had a high repeatability to explore a large area of the solution-space and achieved close-to-optimal solutions with a good diversity,followed by the p NSGA-II,ev MOGA and sp MODE-II.Uncompetitive results were achieved by the ENSES,MOPSO and MODA in most running cases.The study also found that 1400-1800 were minimum required number of evaluations to stabilize optimization results of the building energy model. 展开更多
关键词 multi-objective optimization algorithmS EXPERIMENTATION Building simulation Comparison
在线阅读 下载PDF
Satellite Constellation Design with Multi-Objective Genetic Algorithm for Regional Terrestrial Satellite Network 被引量:12
10
作者 Cuiqin Dai Guimin Zheng Qianbin Chen 《China Communications》 SCIE CSCD 2018年第8期1-10,共10页
Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple f... Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas. 展开更多
关键词 regional terrestrial-satellite net-work constellation design multi-objective optimization genetic algorithm coverage performance
在线阅读 下载PDF
Design of S-band photoinjector with high bunch charge and low emittance based on multi-objective genetic algorithm 被引量:1
11
作者 Ze-Yi Dai Yuan-Cun Nie +9 位作者 Zi Hui Lan-Xin Liu Zi-Shuo Liu Jian-Hua Zhong Jia-Bao Guan Ji-Ke Wang Yuan Chen Ye Zou Hao-Hu Li Jian-Hua He 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第3期93-105,共13页
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play... High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed. 展开更多
关键词 Electron linear accelerator PHOTOINJECTOR Beam dynamics multi-objective genetic algorithm
在线阅读 下载PDF
Non-dominated sorting culture differential evolution algorithm for multi-objective optimal operation of Wind-Solar-Hydro complementary power generation system 被引量:4
12
作者 Guanjun Liu Hui Qin +2 位作者 Rui Tian Lingyun Tang Jie Li 《Global Energy Interconnection》 2019年第4期368-374,共7页
Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total sys... Due to the intermittency and instability of Wind-Solar energy and easy compensation of hydropower, this study proposes a Wind-Solar-Hydro power optimal scheduling model. This model is aimed at maximizing the total system power generation and the minimum ten-day joint output. To effectively optimize the multi-objective model, a new algorithm named non-dominated sorting culture differential evolution algorithm(NSCDE) is proposed. The feasibility of NSCDE was verified through several well-known benchmark problems. It was then applied to the Jinping Wind-Solar-Hydro complementary power generation system. The results demonstrate that NSCDE can provide decision makers a series of optimized scheduling schemes. 展开更多
关键词 Wind-Solar-Hydro COMPLEMENTARY power generation system Scheduling strategy multi-objective optimization CULTURE algorithm
在线阅读 下载PDF
Vector Dominating Multi-objective Evolution Algorithm for Aerodynamic-Structure Integrative Design of Wind Turbine Blade 被引量:1
13
作者 Wang Long Wang Tongguang +1 位作者 Wu Jianghai Ke Shitang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期1-8,共8页
A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynam... A novel multi-objective optimization algorithm incorporating vector method and evolution strategies,referred as vector dominant multi-objective evolutionary algorithm(VD-MOEA),is developed and applied to the aerodynamic-structural integrative design of wind turbine blades.A set of virtual vectors are elaborately constructed,guiding population to fast move forward to the Pareto optimal front and dominating the distribution uniformity with high efficiency.In comparison to conventional evolution algorithms,VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation when handling complex problems of multi-variables,multi-objectives and multi-constraints.As an example,a 1.5 MW wind turbine blade is subsequently designed taking the maximum annual energy production,the minimum blade mass,and the minimum blade root thrust as the optimization objectives.The results show that the Pareto optimal set can be obtained in one single simulation run and that the obtained solutions in the optimal set are distributed quite uniformly,maximally maintaining the population diversity.The efficiency of VD-MOEA has been elevated by two orders of magnitude compared with the classical NSGA-II.This provides a reliable high-performance optimization approach for the aerodynamic-structural integrative design of wind turbine blade. 展开更多
关键词 wind turbine multi-objective optimization vector method evolution algorithm
在线阅读 下载PDF
Multi-objective Collaborative Optimization for Scheduling Aircraft Landing on Closely Spaced Parallel Runways Based on Genetic Algorithms 被引量:1
14
作者 Zhang Shuqin Jiang Yu Xia Hongshan 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第4期502-509,共8页
A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controlle... A scheduling model of closely spaced parallel runways for arrival aircraft was proposed,with multi-objections of the minimum flight delay cost,the maximum airport capacity,the minimum workload of air traffic controller and the maximum fairness of airlines′scheduling.The time interval between two runways and changes of aircraft landing order were taken as the constraints.Genetic algorithm was used to solve the model,and the model constrained unit delay cost of the aircraft with multiple flight tasks to reduce its delay influence range.Each objective function value or the fitness of particle unsatisfied the constrain condition would be punished.Finally,one domestic airport hub was introduced to verify the algorithm and the model.The results showed that the genetic algorithm presented strong convergence and timeliness for solving constraint multi-objective aircraft landing problem on closely spaced parallel runways,and the optimization results were better than that of actual scheduling. 展开更多
关键词 air transportation runway scheduling closely spaced parallel runways genetic algorithm multi-objections
在线阅读 下载PDF
Quantum walk search algorithm for multi-objective searching with iteration auto-controlling on hypercube 被引量:1
15
作者 Yao-Yao Jiang Peng-Cheng Chu +1 位作者 Wen-Bin Zhang Hong-Yang Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期157-162,共6页
Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector... Shenvi et al.have proposed a quantum algorithm based on quantum walking called Shenvi-Kempe-Whaley(SKW)algorithm,but this search algorithm can only search one target state and use a specific search target state vector.Therefore,when there are more than two target nodes in the search space,the algorithm has certain limitations.Even though a multiobjective SKW search algorithm was proposed later,when the number of target nodes is more than two,the SKW search algorithm cannot be mapped to the same quotient graph.In addition,the calculation of the optimal target state depends on the number of target states m.In previous studies,quantum computing and testing algorithms were used to solve this problem.But these solutions require more Oracle calls and cannot get a high accuracy rate.Therefore,to solve the above problems,we improve the multi-target quantum walk search algorithm,and construct a controllable quantum walk search algorithm under the condition of unknown number of target states.By dividing the Hilbert space into multiple subspaces,the accuracy of the search algorithm is improved from p_(c)=(1/2)-O(1/n)to p_(c)=1-O(1/n).And by adding detection gate phase,the algorithm can stop when the amplitude of the target state becomes the maximum for the first time,and the algorithm can always maintain the optimal number of iterations,so as to reduce the number of unnecessary iterations in the algorithm process and make the number of iterations reach t_(f)=(π/2)(?). 展开更多
关键词 multi-objective quantum walk search algorithm accurate probability
在线阅读 下载PDF
Selection Method of Multi-Objective Problems Using Genetic Algorithm in Motion Plan of AUV 被引量:3
16
作者 ZHANG Ming-jun , ZHENG Jin-xing , ZHANG Jing College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001 ,China College of Computer and Information Science, Harbin Engineering University, Harbin 150001 , China 《Journal of Marine Science and Application》 2002年第1期81-86,共6页
To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as... To research the effect of the selection method of multi — objects genetic algorithm problem on optimizing result, this method is analyzed theoretically and discussed by using an autonomous underwater vehicle (AUV) as an object. A changing weight value method is put forward and a selection formula is modified. Some experiments were implemented on an AUV, TwinBurger. The results shows that this method is effective and feasible. 展开更多
关键词 AUV multi objective optimization genetic algorithm selection method
在线阅读 下载PDF
Co-optimization of carbon dioxide storage and enhanced oil recovery in oil reservoirs using a multi-objective genetic algorithm(NSGA-Ⅱ) 被引量:6
17
作者 SAFARZADEH Mohammad Amin MOTAHHARI Seyyed Mahdia 《Petroleum Science》 SCIE CAS CSCD 2014年第3期460-468,共9页
Climate researchers have observed that the carbon dioxide (CO2) concentration in the atmosphere have been growing significantly over the past century. CO2 from energy represents about 75% of the greenhouse gas (GHG... Climate researchers have observed that the carbon dioxide (CO2) concentration in the atmosphere have been growing significantly over the past century. CO2 from energy represents about 75% of the greenhouse gas (GHG) emissions for Annex B (Developed) countries, and over 60% of global emissions. Because of impermeable cap rocks hydrocarbon reservoirs are able to sequester CO〉 In addition, due to high-demand for oil worldwide, injection of CO2 is a useful way to enhance oil production. Hence, applying an efficient method to co-optimize CO2 storage and oil production is vital. Lack of suitable optimization techniques in the past led most multi-objective optimization problems to be tackled in the same way as a single objective optimization issue. However, there are some basic differences between the multi and single objective optimization methods. In this study, by using a non- dominated sorting genetic algorithm (NSGA-II) for an oil reservoir, some appropriate scenarios are proposed based on simultaneous gas storage and enhanced oil recovery optimization. The advantages of this method allow us to amend production scenarios after implementing the optimization process, by regarding the variation of economic parameters such as oil price and CO2 tax. This leads to reduced risks and time duration of making new decisions based on upcoming situations. 展开更多
关键词 Greenhouse gas emission carbon dioxide enhanced oil recovery multi-objective optimization decision making
在线阅读 下载PDF
Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
18
作者 向依婕 高思妍 +4 位作者 王春雷 方海平 段香梅 郑益峰 张越宇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期429-435,共7页
Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conver... Titanium dioxide(TiO_(2))has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices.However,the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO_(2),primarily attributed to the substantial band gaps(exceeding 3.0 eV)associated with its rutile and anatase phases.Leveraging multi-objective global optimization,we have identified two quasi-layered ternary Ti-O-S crystals,composed of titanium,oxygen,and sulfur.The calculations of formation energy,phonon dispersions,and thermal stability confirm the chemical,dynamical and thermal stability of these newly discovered phases.Employing the state-of-art hybrid density functional approach and many-body perturbation theory(quasiparticle GW approach and Bethe-Salpeter equation),we calculate the optical properties of both the TiOS phases.Significantly,both phases show favorable photocatalytic characteristics,featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation.Therefore,ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion,showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds. 展开更多
关键词 PHOTOCATALYSIS first principles calculations multi-objective global optimization
在线阅读 下载PDF
Multi-objective microgrid optimal dispatching based on improved bird swarm algorithm 被引量:5
19
作者 Xiaoyan Ma Yunfei Mu +4 位作者 Yu Zhang Chenxi Zang Shurong Li Xinyang Jiang Meng Cui 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期154-167,共14页
Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy a... Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization. 展开更多
关键词 MICROGRID Operation optimization Bird swarm algorithm Levy flight strategy SELF-ADAPTIVE
在线阅读 下载PDF
Novel constrained multi-objective biogeography-based optimization algorithm for robot path planning 被引量:1
20
作者 XU Zhi-dan MO Hong-wei 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期96-101,共6页
A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives... A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP. 展开更多
关键词 constrained multi-objective optimization biogeography-based optimization robot pathplanning
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部