Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic...Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic control theory. However, now global convergence of GPC has not been established for algorithms in computing a least squares iteration. A generalized model of adaptive generalized predictive control is presented. The global convergebce is also given on the basis of estimating the parameters of GPC by least squares algorithm.展开更多
Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterativ...Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterative learning control(2D-MGPILC) strategy based on the multi-model with time-varying weights was introduced for optimizing the tracking performance of desired temperature profile. This strategy was modeled based on an iterative learning control(ILC) algorithm for a 2D system and designed in the generalized predictive control(GPC) framework. Firstly, a multi-model structure with time-varying weights was developed to describe the complex operation of a general semi-batch reactor. Secondly, the 2 D-MGPILC algorithm was proposed to optimize simultaneously the dynamic performance along the time and batch axes. Finally, simulation for the controller design of a semi-batch reactor with multiple reactions was involved to demonstrate that the satisfactory performance could be achieved despite of the repetitive or non-repetitive disturbances.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
针对数据存储中心硬盘故障数据稀少造成的故障预测效果不佳的问题,面向自我检测分析与报告技术(self-monitoring analysis and reporting technology,SMART)数据信息的时序特征,提出一种通过数据增强解决不平衡问题的硬盘故障预测算法...针对数据存储中心硬盘故障数据稀少造成的故障预测效果不佳的问题,面向自我检测分析与报告技术(self-monitoring analysis and reporting technology,SMART)数据信息的时序特征,提出一种通过数据增强解决不平衡问题的硬盘故障预测算法。该算法利用长短期记忆网络改进传统的生成对抗网络,生成包含故障恶化趋势信息的序列段数据,解决了数据集不平衡问题。同时,为进一步提高预测性能,预测模型融合了时序注意力机制和特征注意力机制,挖掘不同SMART特征和时间步对硬盘故障恶化过程的敏感程度。此外,在特征选择阶段结合了多种典型特征选择算法来选取关键特征。在真实硬盘数据集上进行了实验验证,结果表明,所提算法的准确率、召回率和F 1值均有较大提升。展开更多
基金Supported by the National Creative Research Groups Science Foundation of P.R. China (NCRGSFC: 60421002) and National High Technology Research and Development Program of China (863 Program) (2006AA04 Z182)
基金This project was supported by the National Natural Science Foundation of China (60174021) Tianjin Advanced School Science and Technology Development Foundation (01 - 20403) .
文摘Some papers on stochastic adaptive control schemes have established convergence algorithm using a least-squares parameters. With the popular application of GPC, global convergence has become a key problem in automatic control theory. However, now global convergence of GPC has not been established for algorithms in computing a least squares iteration. A generalized model of adaptive generalized predictive control is presented. The global convergebce is also given on the basis of estimating the parameters of GPC by least squares algorithm.
基金Projects(61673205,21727818,61503180)supported by the National Natural Science Foundation of ChinaProject(2017YFB0307304)supported by National Key R&D Program of ChinaProject(BK20141461)supported by the Natural Science Foundation of Jiangsu Province,China
文摘Batch to batch temperature control of a semi-batch chemical reactor with heating/cooling system was discussed in this study. Without extensive modeling investigations, a two-dimensional(2D) general predictive iterative learning control(2D-MGPILC) strategy based on the multi-model with time-varying weights was introduced for optimizing the tracking performance of desired temperature profile. This strategy was modeled based on an iterative learning control(ILC) algorithm for a 2D system and designed in the generalized predictive control(GPC) framework. Firstly, a multi-model structure with time-varying weights was developed to describe the complex operation of a general semi-batch reactor. Secondly, the 2 D-MGPILC algorithm was proposed to optimize simultaneously the dynamic performance along the time and batch axes. Finally, simulation for the controller design of a semi-batch reactor with multiple reactions was involved to demonstrate that the satisfactory performance could be achieved despite of the repetitive or non-repetitive disturbances.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.