藏文文本摘要能使用户快速有效地理解藏文文本内容。然而,公开的、多领域的大规模藏文摘要数据集的稀缺,使得藏文文本摘要生成的发展面临挑战;此外,藏文文本摘要生成研究借用中文和英文等以词作为基本单元的文本摘要生成技术构建模型,...藏文文本摘要能使用户快速有效地理解藏文文本内容。然而,公开的、多领域的大规模藏文摘要数据集的稀缺,使得藏文文本摘要生成的发展面临挑战;此外,藏文文本摘要生成研究借用中文和英文等以词作为基本单元的文本摘要生成技术构建模型,但由于藏文受分词技术的限制,直接以词作为文本摘要生成的基本单元,对性能的影响较大。针对上述问题,构建包含10523条文本-摘要对的多领域藏文短文本摘要数据集TB-SUM,在研究藏文文本构成单元的基础上,提出适用于藏文文本摘要生成的不同基本单元融合方法,并构建融合不同基本单元的藏文文本摘要生成模型Fusion_GloVe_GRU_Atten,利用全局词向量表示(GloVe)模块实现藏文文本向量化后通过双向门控循环单元(Bi-GRU)模块对输入向量进行编码,利用注意力机制获取输入向量的完整语义信息,使解码器更加关注与当前单词相关的编码器输出,同时将GRU作为解码器生成藏文摘要。在数据集TB-SUM和Ti-SUM上的实验结果表明,以音节和词的融合作为模型训练的基本单元,以音节作为测试的基本单元时,Fusion_GloVe_GRU_Atten模型生成短文本摘要效果更好,能得到更高的ROUGE(Recall-Oriented Understudy for Gisting Evaluation)分数。展开更多
当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利...当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值.展开更多
文摘藏文文本摘要能使用户快速有效地理解藏文文本内容。然而,公开的、多领域的大规模藏文摘要数据集的稀缺,使得藏文文本摘要生成的发展面临挑战;此外,藏文文本摘要生成研究借用中文和英文等以词作为基本单元的文本摘要生成技术构建模型,但由于藏文受分词技术的限制,直接以词作为文本摘要生成的基本单元,对性能的影响较大。针对上述问题,构建包含10523条文本-摘要对的多领域藏文短文本摘要数据集TB-SUM,在研究藏文文本构成单元的基础上,提出适用于藏文文本摘要生成的不同基本单元融合方法,并构建融合不同基本单元的藏文文本摘要生成模型Fusion_GloVe_GRU_Atten,利用全局词向量表示(GloVe)模块实现藏文文本向量化后通过双向门控循环单元(Bi-GRU)模块对输入向量进行编码,利用注意力机制获取输入向量的完整语义信息,使解码器更加关注与当前单词相关的编码器输出,同时将GRU作为解码器生成藏文摘要。在数据集TB-SUM和Ti-SUM上的实验结果表明,以音节和词的融合作为模型训练的基本单元,以音节作为测试的基本单元时,Fusion_GloVe_GRU_Atten模型生成短文本摘要效果更好,能得到更高的ROUGE(Recall-Oriented Understudy for Gisting Evaluation)分数。
文摘当前基于深度学习的中文长文本摘要生成的研究存在以下问题:(1)生成模型缺少信息引导,缺乏对关键词汇和语句的关注,存在长文本跨度下关键信息丢失的问题;(2)现有中文长文本摘要模型的词表常以字为基础,并不包含中文常用词语与标点,不利于提取多粒度的语义信息.针对上述问题,本文提出了融合引导注意力的中文长文本摘要生成(Chinese Long text Summarization with Guided Attention,CLSGA)方法.首先,针对中文长文本摘要生成任务,利用抽取模型灵活抽取长文本中的核心词汇和语句,构建引导文本,用以指导生成模型在编码过程中将注意力集中于更重要的信息.其次,设计中文长文本词表,将文本结构长度由字统计改变至词组统计,有利于提取更加丰富的多粒度特征,进一步引入层次位置分解编码,高效扩展长文本的位置编码,加速网络收敛.最后,以局部注意力机制为骨干,同时结合引导注意力机制,以此有效捕捉长文本跨度下的重要信息,提高摘要生成的精度.在四个不同长度的公共中文摘要数据集LCSTS(大规模中文短文本摘要数据集)、CNewSum(大规模中国新闻摘要数据集)、NLPCC2017和SFZY2020上的实验结果表明:本文方法对于长文本摘要生成具有显著优势,能够有效提高ROUGE-1、ROUGE-2、ROUGE-L值.