Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to...Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.展开更多
Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the...Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.展开更多
Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression mo...Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.展开更多
The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function mod...The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method.展开更多
The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensi...The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52475166,52175148)the Regional Collaboration Project of Shanxi Province(Grant No.202204041101044).
文摘Modern warfare demands weapons capable of penetrating substantial structures,which presents sig-nificant challenges to the reliability of the electronic devices that are crucial to the weapon's perfor-mance.Due to miniaturization of electronic components,it is challenging to directly measure or numerically predict the mechanical response of small-sized critical interconnections in board-level packaging structures to ensure the mechanical reliability of electronic devices in projectiles under harsh working conditions.To address this issue,an indirect measurement method using the Bayesian regularization-based load identification was proposed in this study based on finite element(FE)pre-dictions to estimate the load applied on critical interconnections of board-level packaging structures during the process of projectile penetration.For predicting the high-strain-rate penetration process,an FE model was established with elasto-plastic constitutive models of the representative packaging ma-terials(that is,solder material and epoxy molding compound)in which material constitutive parameters were calibrated against the experimental results by using the split-Hopkinson pressure bar.As the impact-induced dynamic bending of the printed circuit board resulted in an alternating tensile-compressive loading on the solder joints during penetration,the corner solder joints in the edge re-gions experience the highest S11 and strain,making them more prone to failure.Based on FE predictions at different structural scales,an improved Bayesian method based on augmented Tikhonov regulariza-tion was theoretically proposed to address the issues of ill-posed matrix inversion and noise sensitivity in the load identification at the critical solder joints.By incorporating a wavelet thresholding technique,the method resolves the problem of poor load identification accuracy at high noise levels.The proposed method achieves satisfactorily small relative errors and high correlation coefficients in identifying the mechanical response of local interconnections in board-level packaging structures,while significantly balancing the smoothness of response curves with the accuracy of peak identification.At medium and low noise levels,the relative error is less than 6%,while it is less than 10%at high noise levels.The proposed method provides an effective indirect approach for the boundary conditions of localized solder joints during the projectile penetration process,and its philosophy can be readily extended to other scenarios of multiscale analysis for highly nonlinear materials and structures under extreme loading conditions.
基金Project(xjj20100078) supported by the Fundamental Research Funds for the Central Universities in China
文摘Several parameter identification methods of thermal response test were evaluated through numerical and experimental study.A three-dimensional finite-volume numerical model was established under the assumption that the soil thermal conductivity had been known in the simulation of thermal response test.The thermal response curve was firstly obtained through numerical calculation.Then,the accuracy of the numerical model was verified with measured data obtained through a thermal response test.Based on the numerical and experimental thermal response curves,the thermal conductivity of the soil was calculated by different parameter identification methods.The calculated results were compared with the assumed value and then the accuracy of these methods was evaluated.Furthermore,the effects of test time,variable data quality,borehole radius,initial ground temperature,and heat injection rate were analyzed.The results show that the method based on cylinder-source model has a low precision and the identified thermal conductivity decreases with an increase in borehole radius.For parameter estimation,the measuring accuracy of the initial temperature of the deep ground soil has greater effect on identified thermal conductivity.
基金supported by the National Security Major Basic Research Project of China (973-61334).
文摘Because the real input acceleration cannot be obtained during the error model identification of inertial navigation platform, both the input and output data contain noises. In this case, the conventional regression model and the least squares (LS) method will result in bias. Based on the models of inertial navigation platform error and observation error, the errors-in-variables (EV) model and the total least squares (TLS) method axe proposed to identify the error model of the inertial navigation platform. The estimation precision is improved and the result is better than the conventional regression model based LS method. The simulation results illustrate the effectiveness of the proposed method.
文摘The problem of discrete-time model identification of industrial processes with time delay was investigated.An iterative and separable method is proposed to solve this problem,that is,the rational transfer function model parameters and time delay are alternately fixed to estimate each other.The instrumental variable technique is applied to guarantee consistent estimation against measurement noise.A noteworthy merit of the proposed method is that it can handle fractional time delay estimation,compared to existing methods commonly assuming that the time delay is an integer multiple of the sampling interval.The identifiability analysis for time delay is addressed and correspondingly,some guidelines are provided for practical implementation of the proposed method.Numerical and experimental examples are presented to illustrate the effectiveness of the proposed method.
文摘The problem of identification of friend-or-foe aircraft in the actual application condition is addressed.A hybrid algorithm combining fuzzy neutral network with probability factor(FNNP),multi-level fuzzy comprehensive evaluation and the DempsterShafer(D-S) theory is proposed.This hybrid algorithm constructs a complete process from generating the fuzzy database to the final identification,realizes the identification of friend-or-foe automatically if the training samples or expert’s experience can be obtained,and reduces the effect of uncertainties in the process of identification.At the same time,the whole algorithm can update the identification result with the augment of observations.The performance of the proposed algorithm is assessed by simulations.Results show that the proposed algorithm can successfully deduce the aircraft’s identity even if the observations have measurement errors.