期刊文献+
共找到309篇文章
< 1 2 16 >
每页显示 20 50 100
FDiff-Fusion:基于模糊逻辑驱动的医学图像扩散融合网络分割模型
1
作者 耿胜 丁卫平 +3 位作者 鞠恒荣 黄嘉爽 姜舒 王海鹏 《计算机科学》 北大核心 2025年第6期274-285,共12页
医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边... 医学图像分割在临床诊疗和病理分析中具有重要的应用价值。近年来,去噪扩散模型在图像分割建模方面取得了显著成功,其能够更好地捕获图像中的复杂结构和细节信息。然而,利用去噪扩散模型进行医学图像分割的方法大多忽略了分割目标的边界不确定和区域模糊因素,从而造成了最终分割结果的不稳定性和不准确性。为了解决这一问题,提出了一种基于模糊逻辑驱动的医学图像扩散融合网络分割模型(FDiff-Fusion)。该模型通过将去噪扩散模型集成到经典U-Net网络中,有效地从输入医学图像中提取丰富的语义信息。由于医学图像的分割目标边界不确定性和区域模糊化现象普遍存在,因此在U-Net网络的跳跃路径上设计了一种模糊学习模块。该模块为输入的编码特征设置多个模糊隶属度函数,以描述特征点之间的相似程度,并对模糊隶属度函数应用模糊规则处理,从而增强了模型对不确定边界和模糊区域的建模能力。此外,为了提高模型分割结果的准确性和鲁棒性,在测试阶段引入了基于迭代注意力特征融合的方法。该方法将局部上下文信息添加到注意力模块中的全局上下文信息中,以融合每个去噪时间步的预测结果。实验结果显示,与现有的先进分割网络相比,FDiff-Fusion在BRATS 2020脑肿瘤数据集上获得的平均Dice分数和HD95距离分别为84.16%和2.473mm,在BTCV腹部多器官数据集上获得的平均Dice分数和HD95距离分别为83.82%和7.98mm,表现出良好的分割性能。 展开更多
关键词 去噪扩散模型 U-Net网络 医学图像分割 模糊学习 迭代注意力特征融合
在线阅读 下载PDF
面向社交网络平台的多模态网络欺凌检测模型研究 被引量:1
2
作者 李猛坤 李柯锦 +3 位作者 王琪 袁晨 吕慧颖 应作斌 《信息安全研究》 北大核心 2025年第2期154-163,共10页
随着社交网络平台的迅速发展,网络欺凌问题日益突出,文本与图片相结合的多样化网络表达形式提高了网络欺凌的检测和治理难度.构建了一个包含文本和图片的中文多模态网络欺凌数据集,将BERT(bidirectional encoder representations from t... 随着社交网络平台的迅速发展,网络欺凌问题日益突出,文本与图片相结合的多样化网络表达形式提高了网络欺凌的检测和治理难度.构建了一个包含文本和图片的中文多模态网络欺凌数据集,将BERT(bidirectional encoder representations from transformers)模型与ResNet50模型相结合,分别提取文本和图片的单模态特征,并进行决策层融合,对融合后的特征进行检测,实现了对网络欺凌与非网络欺凌2个类别的文本和图片的准确识别.实验结果表明,提出的多模态网络欺凌检测模型能够有效识别出包含文本与图片的具有网络欺凌性质的社交网络帖子或者评论,提高了多模态形式网络欺凌检测的实用性、准确性和效率,为社交网络平台的网络欺凌检测和治理提供了一种新的思路和方法,有助于构建更加健康、文明的网络环境. 展开更多
关键词 网络欺凌 多模态 特征融合 检测模型 社交网络平台
在线阅读 下载PDF
基于多站点预测模型的分布式光伏电站智能选址方法 被引量:1
3
作者 宋玲 常隆涛 +3 位作者 吕舜铭 杨朝晖 刘新锋 陈关忠 《郑州大学学报(工学版)》 北大核心 2025年第2期119-126,134,共9页
为了提升光伏电站运营效率,针对多站点选址问题提出了一种多站点预测模型(MSFM),通过时空相关性、事件数据和气象因素来预测多站点的电力输出。引入三维张量来表示时空数据,采用张量分解技术恢复零条目,并利用三维张量和ResNet模型模拟... 为了提升光伏电站运营效率,针对多站点选址问题提出了一种多站点预测模型(MSFM),通过时空相关性、事件数据和气象因素来预测多站点的电力输出。引入三维张量来表示时空数据,采用张量分解技术恢复零条目,并利用三维张量和ResNet模型模拟时空邻接性、趋势、事件文本数据及气象影响。根据山东省济南市的1 155个光伏发电站运行数据和气象数据建立实验数据集,通过平均绝对误差、相对绝对误差、均方根误差和相对均方根误差来验证所提方法的效果,4个评价指标分别至少降低了2.3%、0.9%、2.6%、2.5%。实验结果表明:所提方法能够应用于多站点选址问题。 展开更多
关键词 智能选址 多站点电力输出预测 深度残差网络 模型融合 时空相关性
在线阅读 下载PDF
基于改进TCNN算法的脑电动态连续情绪识别研究
4
作者 揭丽琳 刘勇 +3 位作者 王铭勋 邹杨萌 徐亦璐 鲁宇明 《电子学报》 北大核心 2025年第4期1347-1360,共14页
在现实生活中,人类情绪具有动态和多样化的特征,受外部环境、社交互动以及个体内在状态的共同影响.针对脑电情绪识别研究通常局限于实验室的静态场景,未能充分考虑情绪的动态连续性的问题,本文提出了一种基于改进TCNN算法的脑电动态连... 在现实生活中,人类情绪具有动态和多样化的特征,受外部环境、社交互动以及个体内在状态的共同影响.针对脑电情绪识别研究通常局限于实验室的静态场景,未能充分考虑情绪的动态连续性的问题,本文提出了一种基于改进TCNN算法的脑电动态连续情绪识别方法 .首先,设计了适用于动态情境的脑电数据采集范式,使用64通道的脑电设备收集24名受试者在经历开心至平静、平静至开心、平静至悲伤、悲伤至平静、平静至紧张和紧张至平静六种动态连续情绪转变时的脑电信号,并进行了动态连续情绪标签的标注.其次,对现有的TCNN算法进行了改进,构建了一种双流网络模型进行动态连续情绪识别.该模型通过短期流利用时序卷积模块捕捉局部时间序列特征,而长期流则通过Transformer模块捕捉全局时间序列特征.最后,对提取的脑电特征进行特征层融合,以获得更加精准的动态连续情绪识别结果.结果表明:在采集的动态连续情绪数据集上,本文方法在六种情绪的valence和arousal上分别取得了最小误差均值0.083和0.084;在DEAP数据集上,valence和arousal的误差分别低至0.108和0.113.与四种传统机器学习算法以及GRU、CGRU、CNN、CNN-LSTM、CNN-Bi-LSTM、TCNN等六种深度学习模型相比,本文方法表现出了更高的识别精度和稳定性,能够有效满足应用场景的需求. 展开更多
关键词 脑电信号 情绪识别 特征提取 特征融合 双流网络模型
在线阅读 下载PDF
基于DSG-ResNet34的聚乙烯燃气管道电熔焊接缺陷检测
5
作者 凌晓 刘露 +2 位作者 孙宝财 张正棠 徐晓刚 《仪器仪表学报》 北大核心 2025年第6期228-240,共13页
PE燃气管道的连接质量能直接影响中低压燃气的正常输送,在电熔焊接时产生的结构畸变、冷焊等缺陷会显著削弱管道的力学性能,威胁燃气管网的稳定运行。因此,基于实地采集的PE燃气管道电熔焊接缺陷DR图像数据集,提出了基于DSG-ResNet34模... PE燃气管道的连接质量能直接影响中低压燃气的正常输送,在电熔焊接时产生的结构畸变、冷焊等缺陷会显著削弱管道的力学性能,威胁燃气管网的稳定运行。因此,基于实地采集的PE燃气管道电熔焊接缺陷DR图像数据集,提出了基于DSG-ResNet34模型的缺陷检测方法,以实现对电熔焊接缺陷进行快速精准地检测。该网络模型由主干网络CBAM-ResNet34模块、动态稀疏门控金字塔DSG-FPN、多尺度检测头3个部分组成,首先通过主干网络CBAM-ResNet34结构从通道和空间两个维度提升网络模型对缺陷特征的关注度,然后通过动态稀疏门控金字塔DSG-FPN结构的动态稀疏门控模块、Inception模块、稀疏连接动态融合多尺度缺陷特征,有效保留小目标特征、抑制背景噪声,最后通过多尺度检测头结构将提取到的丰富特征转化为具体的检测结果。DSG-ResNet34模型的缺陷检测准确率最高可达95.5%、P2层精确率最高可达82.7%、小目标召回率最低为85.6%、检测速度可达68 fps、参数量为22.3×10^(6),该模型能快速定位识别孔洞、熔融面夹杂、结构畸变、冷焊这4类典型电熔焊接缺陷,检测性能与速度优于其他网络模型。为PE管道焊接质量智能化检测提供了高精度解决方案,对保障燃气管网安全运行具有重要意义。 展开更多
关键词 聚乙烯燃气管道 缺陷检测 电熔焊接 ResNet34模型 特征金字塔
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别 被引量:1
6
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
滚动轴承的退化特征信息融合与剩余寿命预测
7
作者 张建宇 王留震 +1 位作者 肖勇 马雅楠 《中国机械工程》 北大核心 2025年第7期1553-1561,共9页
针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融... 针对滚动轴承剩余寿命预测的需求,提出一种基于稀疏自编码器(SAE)和双向长短期记忆网络(BiLSTM)的预测模型。以滚动轴承全寿命振动数据为研究对象,通过构建反双曲变换的状态退化指标和频域谐波退化因子形成退化指标集,并利用SAE特征融合提取关键特征,消除冗余信息。同时,结合BiLSTM模型捕捉时序特征,实现全周期寿命预测。实验结果表明,所提模型优于支持向量回归、极限学习机、卷积神经网络等模型,预测误差更小,泛化能力更强。 展开更多
关键词 稀疏自编码器特征融合 双向长短期记忆网络预测模型 滚动轴承 反双曲特征指标 频域谐波退化因子
在线阅读 下载PDF
基于注意力机制和跨模态层级特征融合的群养肉牛个体质量估测
8
作者 宋平 杨颖 +3 位作者 刘刚 姚冲 李子若 毛天赐 《农业工程学报》 北大核心 2025年第10期221-231,共11页
为解决群养场景下肉牛个体质量称量复杂、精度低的问题,该研究提出了基于注意力机制和跨模态层级特征融合模型CMHFF-ResNet(cross-modal hierarchical feature fusion resnet)。首先,无接触式地采集俯视视角下日常活动的肉牛的RGB(red-g... 为解决群养场景下肉牛个体质量称量复杂、精度低的问题,该研究提出了基于注意力机制和跨模态层级特征融合模型CMHFF-ResNet(cross-modal hierarchical feature fusion resnet)。首先,无接触式地采集俯视视角下日常活动的肉牛的RGB(red-green-blue)图像与深度图像,使用引入定向边界框OBB(oriented bounding box)的YOLOv8网络对肉牛进行旋转目标检测和识别,精准定位群养场景中的个体目标;其次,以ResNet50为骨干网络构建双流估重模型,分别提取RGB和深度模态特征,并引入CBAM(convolutional block attention module)注意力机制以增强关键特征表达能力。设计跨模态的层级特征融合,有效结合RGB流和深度流的特征并充分利用浅层特征;第三,引入肉牛的身份信息便于网络学习肉牛身份与其体质量之间的对应关系,为优化模型效率,将全连接层替换为KAN(kolmogorov-arnold networks),显著减少参数量;最后,将双流的输出结果融合,回归肉牛体质量值。在试验中,构建了包含2546对RGB-D图像的数据集,包括2373对训练数据和173对验证数据。结果表明,CMHFF-ResNet在验证集上的平均绝对误差为14.19 kg。与基于RGB和深度的单流模型相比,双流模型在平均绝对误差上分别降低16.943%和26.133%。同时,该方法优于其他现有肉牛体质量估测方法:与多元线性回归、改进MobileNetv2模型、改进DenseNet201模型和改进跨模态特征融合模型CFF-ResNet相比,在平均绝对误差上分别减少57.233%、34.699%、24.761%和20.991%,提升了群养环境下肉牛个体质量估测的精度与泛化性,能够有效地学习跨模态的层级特征表示。该研究为大规模群养环境中肉牛个体质量的高精度估测提供了参考。 展开更多
关键词 模型 计算机视觉 目标检测 体质量估测 注意力机制 跨模态层级特征融合 双流网络
在线阅读 下载PDF
动态时间序列建模的多模态情感识别方法 被引量:2
9
作者 李佳泽 梅红岩 +1 位作者 贾丽云 李文娅 《计算机工程与应用》 北大核心 2025年第1期196-205,共10页
现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部... 现有的情感识别研究未充分考虑语音信号中的局部-全局信息和长期时间依赖关系,文本特征提取也存在特征稀疏和信息丢失的问题。为解决上述问题,提出动态时间序列建模的多模态情感识别方法。设计动态时间窗口模块分割语音信号从而捕捉局部-全局信息,并通过双向序列建模捕获信号中的空间信息。考虑到文本信息对情感分析的重要性,采用基于Transformer模型的卷积神经网络捕捉文本中不同位置间的依赖关系建模较长的上下文信息,最后将两种模态进行融合得到最终的情感分类。模型在IEMOCAP数据集上的实验结果表明,相比其他主流模型具有更好的多模态情感识别效果。 展开更多
关键词 多模态情感分析 动态时间窗口 双向时间序列建模 卷积神经网络 多模态融合
在线阅读 下载PDF
多层特征融合及可解释的中医四诊相似度计算方法
10
作者 程春雷 蓝勇 +3 位作者 叶青 邹静 张素华 杨瑞 《计算机应用与软件》 北大核心 2025年第8期41-47,共7页
计算中医四诊文本之间的相似度,推荐与患者四诊表现相似的既有医案,可以有效辅助临床决策与专业学习。中医四诊文本缺乏临床术语标准,普遍存在措词组句的灵活性和个性化。为了在规模有限的中医语料上得到四诊有效表征,结合四诊文本特点... 计算中医四诊文本之间的相似度,推荐与患者四诊表现相似的既有医案,可以有效辅助临床决策与专业学习。中医四诊文本缺乏临床术语标准,普遍存在措词组句的灵活性和个性化。为了在规模有限的中医语料上得到四诊有效表征,结合四诊文本特点从考虑词汇序列和弱化词汇序列两个层面对文本进行表征,使用稀疏注意力机制关注关键特征,增强模型的可解释性,后引入梯度提升树(GBDT)捕捉多种有区分性的四诊特征组合以精确预测二者相似度。在中医四诊文本数据集上进行验证,该方法均方误差和Pearsonr系数达到了82.06和0.89。实验结果表明,该方法可以有效改善四诊文本的语义表示并消除一些无关特征的影响,以及增强对两段四诊文本组合特征的捕获,从而提升四诊文本之间相似度的预测结果。 展开更多
关键词 中医四诊相似度 多层特征融合 稀疏注意力 可解释性 孪生网络 GBDT模型
在线阅读 下载PDF
FTIR光谱结合CNN测定不同温度下的反应组分含量
11
作者 韦怡 倪力伟 +1 位作者 许启跃 叶树亮 《化学研究与应用》 北大核心 2025年第9期2539-2546,共8页
为了解决不同反应温度下傅里叶变换中红外光谱(FTIR)模型无法共享的问题,提出了一种基于卷积神经网络(CNN)的定量温度校正模型。该模型由光谱和温度两个分支构成,光谱分支用于提取组分定量特征,温度分支用于进行温度补偿,将这两个分支... 为了解决不同反应温度下傅里叶变换中红外光谱(FTIR)模型无法共享的问题,提出了一种基于卷积神经网络(CNN)的定量温度校正模型。该模型由光谱和温度两个分支构成,光谱分支用于提取组分定量特征,温度分支用于进行温度补偿,将这两个分支输出的特征向量相加融合,再经过全连接层输出待测组分含量的预测值。以不同温度和质量比的丙烯酸、聚丙烯酸和水的混合溶液为实验样品,利用双输入CNN建立了丙烯酸和聚丙烯酸的定量模型,将其预测结果与偏最小二乘(PLS)单温度模型和PLS全温度模型结果进行比较。结果显示,双输入CNN模型对丙烯酸和聚丙烯酸的预测性能最优,其测试集的均方根误差相比PLS单温度模型分别降低了42.93%、66.61%,相比PLS全温度模型分别降低了34.65%、51.16%。基于已建模型对不同温度下的丙烯酸聚合反应进行定量分析,双输入CNN模型对丙烯酸的平均绝对误差为0.1748%,对聚丙烯酸的平均绝对误差为0.2818%。结果表明,双输入CNN模型具有较高的预测精度,可以对不同温度下的聚合反应进行准确有效地在线分析。 展开更多
关键词 傅里叶变换红外光谱 卷积神经网络 双输入融合模型 温度校正 反应组分定量
在线阅读 下载PDF
基于多模态特征融合的场景文本识别 被引量:1
12
作者 蔡明哲 王满利 +1 位作者 窦泽亚 张长森 《计算机应用研究》 北大核心 2025年第4期1274-1280,共7页
为了解决自然场景文本图像因为遮挡、扭曲等原因难以识别的问题,提出基于多模态特征融合的场景文本识别网络(multimodal scene text recognition,MMSTR)。首先,MMSTR使用共享权重内部自回归的排列语言模型实现多种解码策略;其次,MMSTR... 为了解决自然场景文本图像因为遮挡、扭曲等原因难以识别的问题,提出基于多模态特征融合的场景文本识别网络(multimodal scene text recognition,MMSTR)。首先,MMSTR使用共享权重内部自回归的排列语言模型实现多种解码策略;其次,MMSTR在图像编码阶段提出残差注意力编码器(residual attention encoder,REA-encoder)提高了对浅层特征捕获能力,使得浅层特征能够传到更深的网络层,有效缓解了vision Transformer提取图像浅层特征不充分引起的特征坍塌问题;最后,针对解码过程中存在语义特征与视觉特征融合不充分的问题,MMSTR构建了决策融合模块(decision fusion module,DFM),利用级联多头注意力机制提高语义与视觉的融合程度。经过实验证明,MMSTR在ⅢT5K、ICDAR13等六个公共数据集上平均词准确率达到96.6%。此外,MMSTR在识别遮挡、扭曲等难以识别的文本图像方面相较于其他的主流算法具有显著优势。 展开更多
关键词 场景文本 特征融合 语言模型 注意力机制 残差网络
在线阅读 下载PDF
无人机海上舰船目标影像超分辨率重建
13
作者 孙炜玮 崔亚奇 +1 位作者 张少卿 夏沭涛 《现代电子技术》 北大核心 2025年第1期17-22,共6页
针对无人机在获取海上舰船目标影像时面临的实时性与清晰度之间的矛盾,提出一种影像压缩模糊重建方法。该方法利用改进的YOLOv8检测模型和Real-ESRGAN网络,通过数据集构建、网络训练调试和部署运用等步骤,实现了在有限带宽和计算资源环... 针对无人机在获取海上舰船目标影像时面临的实时性与清晰度之间的矛盾,提出一种影像压缩模糊重建方法。该方法利用改进的YOLOv8检测模型和Real-ESRGAN网络,通过数据集构建、网络训练调试和部署运用等步骤,实现了在有限带宽和计算资源环境下地面端高质量舰船目标影像的实时重建。首先利用改进的YOLOv8模型对影像中舰船目标进行精准检测和定位,随后通过Real-ESRGAN网络对压缩及模糊影像进行重建,以恢复影像的高分辨率和细节信息。实验结果表明,该方法不仅显著提升了影像的清晰度和检测准确性,还大幅减少了带宽消耗,满足了无人机舰船识别的高实时性要求,且在资源受限的情况下表现尤为突出。为无人机在海上舰船目标监测领域提供了一种有效的解决方案,不仅提高了无人机的监测和识别能力,也为进一步推进无人机在海洋监测中的广泛应用奠定了基础。 展开更多
关键词 无人机影像 海面舰船 双向特征融合模型 Real-ESRGAN网络 改进的YOLOv8检测模型 海上舰船目标监测
在线阅读 下载PDF
机床夹具设计知识图谱构建及应用 被引量:1
14
作者 张称心 孙家盛 段阳 《机电工程》 北大核心 2025年第1期106-116,共11页
针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL... 针对目前机床夹具设计领域中存在的知识挖掘深度不足、利用率不高且过度依赖设计人员经验等问题,提出了一种基于自顶向下方式的机床夹具设计知识图谱构建方法。首先,将机床夹具设计知识分为原理规则类和功能描述类,利用本体建模语言(OWL)对这两类知识进行了本体建模,构建了知识图谱的模式层;其次,在模式层的指导下,以机床夹具设计原理规则文档和设计实例为数据源,利用双向长短期记忆网络-条件随机场算法(BiLSTM-CRF)对其进行了知识抽取,得到了结构化的机床夹具设计知识;然后,运用Neo4j图数据库存储结构化的机床夹具设计知识,得到了知识图谱的数据层;最后,以轴承套筒法兰的夹具设计为例,对该方法的可行性进行了验证;考虑到企业对同一夹具结构的不同技术需求,提出了一种基于图形数据科学算法(GDS)的相似元件替代法,对夹具知识图谱中47个定位元件节点进行了相似度计算,得到了1081条相似度数据样本,并构建了综合评判模型。研究结果表明:当相似度阈值设置为0.76时,将定位元件进行替换的精确率达到了84%。通过建立知识图谱,完成了机床夹具设计的两类知识的有效关联,为构建数据驱动的机床夹具智能设计奠定了基础。 展开更多
关键词 机械设计 智能设计 知识图谱 知识抽取 知识融合 本体建模语言 双向长短期记忆网络-条件随机场算法 图形数据科学算法
在线阅读 下载PDF
基于模糊贝叶斯网络的隧道围岩富水破碎风险分析方法
15
作者 朱庆 郑威鹏 +5 位作者 吴浩宇 丁雨淋 郭永欣 王强 刘利 张骏骁 《西南交通大学学报》 北大核心 2025年第5期1071-1079,共9页
富水破碎不良地质区在隧道施工中容易诱发涌水灾害,为准确分析隧道围岩的富水破碎风险,且满足自动化、定量化风险分析需求,基于开挖数据构建模糊贝叶斯网络风险评估模型,通过隶属函数量化地质参数的不确定性,并结合贝叶斯概率推理,融合... 富水破碎不良地质区在隧道施工中容易诱发涌水灾害,为准确分析隧道围岩的富水破碎风险,且满足自动化、定量化风险分析需求,基于开挖数据构建模糊贝叶斯网络风险评估模型,通过隶属函数量化地质参数的不确定性,并结合贝叶斯概率推理,融合隧道地震预报法与瞬变电磁法的探测数据,得到围岩富水破碎风险概率;进一步利用三维体素模型将风险概率映射至三维坐标,可视化表达风险的空间分布特征.选取典型长大深埋隧道进行实验分析,结果表明:评估模型对地下水情况与岩体完整性分类的准确率分别为80.91%和82.81%,且不受数据完备性限制,能够在单一或多源数据条件下完成定量分析;所建三维体素模型为风险防控提供了有效参考,其中,相较于单一数据,多源数据融合分析结果与现场揭露的富水区、破碎带位置吻合度更高. 展开更多
关键词 隧道 风险分析 三维地质建模 模糊贝叶斯网络 数据融合
在线阅读 下载PDF
集成随机配置网络在输电线路覆冰预测中的应用
16
作者 原辉 胡帆 +2 位作者 范晶晶 俞华 王帅 《测绘通报》 北大核心 2025年第1期29-34,共6页
对输电线路进行覆冰预测是保障电网安全运行的关键技术。由于需要综合考虑地形和气象变化等的影响,覆冰预测是一项具有高维非线性、多模态异质性的复杂任务。本文提出了一种基于集成随机配置网络的深度学习方法预测输电线路覆冰。首先... 对输电线路进行覆冰预测是保障电网安全运行的关键技术。由于需要综合考虑地形和气象变化等的影响,覆冰预测是一项具有高维非线性、多模态异质性的复杂任务。本文提出了一种基于集成随机配置网络的深度学习方法预测输电线路覆冰。首先根据多尺度融合的小波模极大值进行覆冰图像数据边缘检测,提高覆冰线路识别的准确率;然后考虑历史观测数据中的微地理和微气象等特征,通过多种特征要素组合构建Boosting集成学习框架下随机配置网络预测模型,预测输电线路覆冰情况。算例分析结果表明,本文提出的集成模型优于单一模型,可以有效实现覆冰输电线路识别和厚度预测,提高了模型泛化能力和覆冰灾害预测精度。 展开更多
关键词 覆冰预测 随机配置网络 集成学习 预测模型 多尺度融合
在线阅读 下载PDF
基于改进Mask R-CNN的无人船视觉检测 被引量:1
17
作者 佟剑峰 于雨 《船海工程》 北大核心 2025年第1期6-12,共7页
针对无人船视觉检测算法准确率低及水界线检测困难的问题,构造自定义数据集并提出改进Mask R-CNN网络模型的无人船视觉检测算法。改进后的算法以Mask R-CNN网络模型为检测框架,将骨干网络由ResNet50替换成ResNeXt50并加入SENet注意力机... 针对无人船视觉检测算法准确率低及水界线检测困难的问题,构造自定义数据集并提出改进Mask R-CNN网络模型的无人船视觉检测算法。改进后的算法以Mask R-CNN网络模型为检测框架,将骨干网络由ResNet50替换成ResNeXt50并加入SENet注意力机制模块提高模型的特征提取能力;在特征金字塔网络(feature pyramid network,FPN)中加入多尺度的特征提取模块(inception模块),提高特征图的融合效果;加入多尺度锚框(anchors),提高模型对于多尺度目标的检测效果;通过直方图均衡化、调整对比度的方式对输入图像进行预处理,优化输入图像。结果表明,改进后的Mask R-CNN网络模型相比于原始的网络模型在目标检测任务中平均精度均值(mean average precision,mAP)提高了8.86%,交并比为0.5条件下的平均精度(IOU=0.5 average precision,AP 50)提高了9.39%;在实例分割任务中mAP提高了4.55%,AP 50提高了4.63%。相关改进,提高了无人船视觉检测的效率。 展开更多
关键词 无人船视觉 Mask R-CNN网络模型 骨干网络 注意力机制 特征融合
在线阅读 下载PDF
数据-模型融合驱动的高倍率短时脉冲电池模型
18
作者 要宇辉 孙丙香 +4 位作者 张慧敏 马仕昌 赵鑫泽 鲁诗默 朱振威 《电池》 北大核心 2025年第2期232-237,共6页
高倍率短时脉冲工况下,电池的极化特性差异大、温度上升快、极化电压消退不彻底,导致常规等效电路模型仿真效果不佳。参数辨识和分段均方误差分析发现,高倍率脉冲工况下模型在极化消退部分仿真误差较大,导致下一脉冲极化电压初始值失准... 高倍率短时脉冲工况下,电池的极化特性差异大、温度上升快、极化电压消退不彻底,导致常规等效电路模型仿真效果不佳。参数辨识和分段均方误差分析发现,高倍率脉冲工况下模型在极化消退部分仿真误差较大,导致下一脉冲极化电压初始值失准。提出基于一阶等效电路模型和前馈神经网络的数据-模型融合驱动模型。相较于常规等效电路模型,该模型在20 C的短时脉冲工况下,能更精确地模拟电池的电压响应,均方根误差降低了61.29%。 展开更多
关键词 锂离子电池 高倍率短时脉冲工况 等效电路模型 前馈神经网络 数据-模型融合驱动模型
在线阅读 下载PDF
基于融合Transformer模型的配电线路激光点云分割算法
19
作者 代洲 刘燕 +3 位作者 毛先胤 虢韬 徐梁刚 程桂仙 《华南理工大学学报(自然科学版)》 北大核心 2025年第5期139-146,共8页
激光点云模型为后续的配电线路检测与管理提供了重要的支撑,现阶段大多数配电通道都已经构建了相应的激光点云模型。由于点云模型数量的增加,有效提取关键部件(如导线、绝缘子等)的位置信息成为了一项重要任务。为了进一步提升对点云模... 激光点云模型为后续的配电线路检测与管理提供了重要的支撑,现阶段大多数配电通道都已经构建了相应的激光点云模型。由于点云模型数量的增加,有效提取关键部件(如导线、绝缘子等)的位置信息成为了一项重要任务。为了进一步提升对点云模型中配电线路、杆塔、绝缘子等关键部件分割、提取的精准性和效率,该文提出一种基于融合Transformer模型的配电线路激光点云分割算法。考虑到配电线路点云中需要更为关注细节特征的影响,构建了一种双通道平行架构的特征提取模块用于提取高频和低频特征,其中低频特征通过平均池化和基于融合Transformer模型的特征提取器进行处理,高频特征通过最大池化和包含卷积层的多层感知机(MLP)模块进行处理;将两个通道获取的特征向量进行融合,以提升对细节特征的提取能力。此外,考虑到MLP模块在特征处理方面的能力,将融合后特征再次输入MLP模块中作进一步处理,实现了对点云目标的准确分割。该文还开展了大量的实验,验证了所提算法的准确性和有效性。该算法具有提高无人机巡检精度、增强自动化水平、提升鲁棒性、融合多源数据和降低巡检成本等多方面的潜在优势。 展开更多
关键词 Transformer模型 配电线路通道 特征融合 激光点云 神经网络
在线阅读 下载PDF
语义图增强与自适应特征补全的多模态推荐
20
作者 超木日力格 何明鑫 马丽艳 《北京师范大学学报(自然科学版)》 北大核心 2025年第3期307-316,共10页
提出了一种集成高阶语义增强与自适应模态特征的多模态推荐(MMSAF)模型,通过该模型中所采用的图卷积神经网络(graph convolutional neural network,GCNN)进行高阶语义增强,以捕捉用户和项目之间更深层次的关联关系,从而更精准地反映用... 提出了一种集成高阶语义增强与自适应模态特征的多模态推荐(MMSAF)模型,通过该模型中所采用的图卷积神经网络(graph convolutional neural network,GCNN)进行高阶语义增强,以捕捉用户和项目之间更深层次的关联关系,从而更精准地反映用户的复杂兴趣偏好,并验证了该模型的有效性和适用性.引入自适应模态融合机制,依据各模态在不同场景下的相对重要性,动态调整模态特征的权重,以灵活适应多样化的用户偏好.结果表明,MMSAF在多个基准数据集上显著优于现有主流方法,在推荐精度和泛化性方面表现出色. 展开更多
关键词 多模态推荐 图神经网络 自适应 特征融合 高阶关系建模 语义增强
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部