针对红外小目标图像的低分辨率、特征信息少、识别准确率低等问题,提出嵌入空间位置信息和多视角特征提取(Embedded Spatial Location Information and Multi-view Feature Extraction,ESLIMFE)的红外小目标检测模型。首先,随着网络深...针对红外小目标图像的低分辨率、特征信息少、识别准确率低等问题,提出嵌入空间位置信息和多视角特征提取(Embedded Spatial Location Information and Multi-view Feature Extraction,ESLIMFE)的红外小目标检测模型。首先,随着网络深度的增加导致特征图分辨率逐渐减小从而丢失细节信息,因此在骨干网络中嵌入空间位置信息融合注意力机制(Spatial Location Information Fusion,SLIF)弥补小目标特征信息。其次,结合C3模块和动态蛇形卷积提出多视角特征提取(Multi-view Feature Extraction,MVFE)模块,通过在不同视角下提取同一特征来增强小目标的特征表达能力。采用大选择核(Large Selection Kernel,LSK)模块,通过使用不同大小的卷积核提取小目标多尺度信息,以提高对红外小目标定位能力。最后,引入基于注意力的尺度内特征交互(Attention-based Intrascale Feature Interaction,AIFI)模块增强特征之间的交互性。在对空红外小目标数据集上进行实验,实验结果表明,mAP75的检测精度为90.5%,mAP50~95检测精度为74.5%,文中模型能够较好地实现对红外小目标精确检测。展开更多
针对机动目标状态跟踪问题,认知雷达能够调整发射端波形来获取持续、稳健目标跟踪信息.本文基于矩阵加权多模型融合思想引入一种新的面向机动目标跟踪的认知雷达自适应波形设计方法(Adaptive waveform design method based on Matrix-we...针对机动目标状态跟踪问题,认知雷达能够调整发射端波形来获取持续、稳健目标跟踪信息.本文基于矩阵加权多模型融合思想引入一种新的面向机动目标跟踪的认知雷达自适应波形设计方法(Adaptive waveform design method based on Matrix-weighted Interacting Multiple Model,AMIMM).首先,利用多模型思路对机动目标状态进行建模,并考虑各模型目标状态估计及其误差协方差矩阵中元素间相关性,以矩阵加权融合方式代替传统概率加权方式,进而构造基于矩阵加权多模型信息融合的跟踪算法框架;然后,以多模型状态融合后的状态估计误差协方差矩阵为基准,利用特征值分解(Eigen Value Decomposition,EVD)技术求取融合后状态估计误差协方差矩阵对应椭圆参数;最后,通过分数阶傅里叶变换(fractional Fourier transform,FrFT)来旋转雷达量测误差椭圆,使得量测误差椭圆与融合后目标状态估计误差椭圆正交,从而获得下一时刻认知波形参数,实现波形自适应捷变.仿真实验表明,与当前流行多种算法相比,本文所提算法能够进一步提高机动目标跟踪精度和稳健性.展开更多
文摘针对机动目标状态跟踪问题,认知雷达能够调整发射端波形来获取持续、稳健目标跟踪信息.本文基于矩阵加权多模型融合思想引入一种新的面向机动目标跟踪的认知雷达自适应波形设计方法(Adaptive waveform design method based on Matrix-weighted Interacting Multiple Model,AMIMM).首先,利用多模型思路对机动目标状态进行建模,并考虑各模型目标状态估计及其误差协方差矩阵中元素间相关性,以矩阵加权融合方式代替传统概率加权方式,进而构造基于矩阵加权多模型信息融合的跟踪算法框架;然后,以多模型状态融合后的状态估计误差协方差矩阵为基准,利用特征值分解(Eigen Value Decomposition,EVD)技术求取融合后状态估计误差协方差矩阵对应椭圆参数;最后,通过分数阶傅里叶变换(fractional Fourier transform,FrFT)来旋转雷达量测误差椭圆,使得量测误差椭圆与融合后目标状态估计误差椭圆正交,从而获得下一时刻认知波形参数,实现波形自适应捷变.仿真实验表明,与当前流行多种算法相比,本文所提算法能够进一步提高机动目标跟踪精度和稳健性.