This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi...This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.展开更多
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 pre...With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.展开更多
To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from ...To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.展开更多
Radio frequency identification (RFID) has prominent advantages compared with other autoidentification technologies. Combining RFID with network technology, physical object tracking and information sharing can possib...Radio frequency identification (RFID) has prominent advantages compared with other autoidentification technologies. Combining RFID with network technology, physical object tracking and information sharing can possibly be carried out in an innovative way. Regarding open-loop RFID applications, RFID public services infrastructure (PSI) is presented, PSI architecture is designed, and service modules are implemented, and a demonstrative application system, blood management and traceability system, is studied to verify PSI. Experimental results show the feasibility of the proposed architecture and the usability of PSI framework software.展开更多
The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is present...The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.展开更多
Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by...Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.展开更多
In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork model...In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.展开更多
Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi- ties. This paper first fo...Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi- ties. This paper first formulates a mathematical model to theorize and operationalize the SDO problem and then identifies optimal so- lutions to solve the SDO problem. In the solutions, the success rate of the combat task is maximized, whereas the execution time of the task and the cost of changes in the system structure are mini- mized. The presented optimized algorithm generates an optimal solution without the need to check the entire search space. A novel method is finally proposed based on the combination of heuristic method and genetic algorithm (HGA), as well as the combination of heuristic method and particle swarm optimization (HPSO). Experi- ment results show that the HPSO method generates solutions faster than particle swarm optimization (PSO) and genetic algo- rithm (GA) in terms of execution time and performs more efficiently than the heuristic method in terms of determining the best solution.展开更多
How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classif...How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.展开更多
This paper summarized the classification of colorful tree species and the application principles on landscape architecture and briefly introduced the present application situation of colorful tree species in China. It...This paper summarized the classification of colorful tree species and the application principles on landscape architecture and briefly introduced the present application situation of colorful tree species in China. It also raised suggestions related to the introduction and application of the colorful tree species.展开更多
High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,tempe...High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.展开更多
To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta c...To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta concept model of the C4ISR architecture is introduced.According to the meta concept model,we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML.Then,we define the concrete syntax and executable activity algebra(EAA)semantics for executable models.The semantics functions are introduced to translating the syntax description of executable models into the item of EAA.To support the execution of models,we propose the executable rules which are the structural operational semantics of EAA.Finally,an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.展开更多
To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved p...To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.展开更多
Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating ...Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.展开更多
基金Projects(42477162,52108347,52178371,52168046,52178321,52308383)supported by the National Natural Science Foundation of ChinaProjects(2023C03143,2022C01099,2024C01219,2022C03151)supported by the Zhejiang Key Research and Development Plan,China+6 种基金Project(LQ22E080010)supported by the Exploring Youth Project of Zhejiang Natural Science Foundation,ChinaProject(LR21E080005)supported by the Outstanding Youth Project of Natural Science Foundation of Zhejiang Province,ChinaProject(2022M712964)supported by the Postdoctoral Science Foundation of ChinaProject(2023AFB008)supported by the Natural Science Foundation of Hubei Province for Youth,ChinaProject(202203)supported by Engineering Research Centre of Rock-Soil Drilling&Excavation and Protection,Ministry of Education,ChinaProject(202305-2)supported by the Science and Technology Project of Zhejiang Provincial Communication Department,ChinaProject(2021K256)supported by the Construction Research Founds of Department of Housing and Urban-Rural Development of Zhejiang Province,China。
文摘This study proposes a general imperfect thermal contact model to predict the thermal contact resistance at the interface among multi-layered composite structures.Based on the Green-Lindsay(GL)thermoelastic theory,semi analytical solutions of temperature increment and displacement of multi-layered composite structures are obtained by using the Laplace transform method,upon which the effects of thermal resistance coefficient,partition coefficient,thermal conductivity ratio and heat capacity ratio on the responses are studied.The results show that the generalized imperfect thermal contact model can realistically describe the imperfect thermal contact problem.Accordingly,it may degenerate into other thermal contact models by adjusting the thermal resistance coefficient and partition coefficient.
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
文摘With the rapid development of cloud manufacturing technology and the new generation of artificial intelligence technology,the new cloud manufacturing system(NCMS)built on the connotation of cloud manufacturing 3.0 presents a new business model of“Internet of everything,intelligent leading,data driving,shared services,cross-border integration,and universal innovation”.The network boundaries are becoming increasingly blurred,NCMS is facing security risks such as equipment unauthorized use,account theft,static and extensive access control policies,unauthorized access,supply chain attacks,sensitive data leaks,and industrial control vulnerability attacks.Traditional security architectures mainly use information security technology,which cannot meet the active security protection requirements of NCMS.In order to solve the above problems,this paper proposes an integrated cloud-edge-terminal security system architecture of NCMS.It adopts the zero trust concept and effectively integrates multiple security capabilities such as network,equipment,cloud computing environment,application,identity,and data.It adopts a new access control mode of“continuous verification+dynamic authorization”,classified access control mechanisms such as attribute-based access control,rolebased access control,policy-based access control,and a new data security protection system based on blockchain,achieving“trustworthy subject identity,controllable access behavior,and effective protection of subject and object resources”.This architecture provides an active security protection method for NCMS in the digital transformation of large enterprises,and can effectively enhance network security protection capabilities and cope with increasingly severe network security situations.
基金supported by the National Natural Science Foundation of China(41927801).
文摘To address the current problems of poor generality,low real-time,and imperfect information transmission of the battlefield target intelligence system,this paper studies the battlefield target intelligence system from the top-level perspective of multi-service joint warfare.First,an overall planning and analysis method of architecture modeling is proposed with the idea of a bionic analogy for battlefield target intelligence system architecture modeling,which reduces the difficulty of the planning and design process.The method introduces the Department of Defense architecture framework(DoDAF)modeling method,the multi-living agent(MLA)theory modeling method,and other combinations for planning and modeling.A set of rapid planning methods that can be applied to model the architecture of various types of complex systems is formed.Further,the liveness analysis of the battlefield target intelligence system is carried out,and the problems of the existing system are presented from several aspects.And the technical prediction of the development and construction is given,which provides directional ideas for the subsequent research and development of the battlefield target intelligence system.In the end,the proposed architecture model of the battlefield target intelligence system is simulated and verified by applying the colored Petri nets(CPN)simulation software.The analysis demonstrates the reasonable integrity of its logic.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2006AA4A119).
文摘Radio frequency identification (RFID) has prominent advantages compared with other autoidentification technologies. Combining RFID with network technology, physical object tracking and information sharing can possibly be carried out in an innovative way. Regarding open-loop RFID applications, RFID public services infrastructure (PSI) is presented, PSI architecture is designed, and service modules are implemented, and a demonstrative application system, blood management and traceability system, is studied to verify PSI. Experimental results show the feasibility of the proposed architecture and the usability of PSI framework software.
基金This project was supported by the National Natural Science Foundation of China (60135020).
文摘The flexibility of traditional image processing system is limited because those system are designed for specific applications. In this paper, a new TMS320C64x-based multi-DSP parallel computing architecture is presented. It has many promising characteristics such as powerful computing capability, broad I/O bandwidth, topology flexibility, and expansibility. The parallel system performance is evaluated by practical experiment.
基金supported by National Natural Science Foundation of China(Grant No.11802141)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX18_0465)。
文摘Three different kinds of PELE(the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates.The lmpact velocities of the projectiles were measured by the velocity measuring system.The damage degree and process of each laye r of target plate impacted by the three kinds of projectiles were analyzed.The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates.For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket,the diameters of holes on the seco nd layer of plates are 3.36 times and 3.76 times of the diameter of the projectile,re spectively.For radial layered PELE with W/Zr-based amorphous composite jacket,due to the large number of tungsten wires dispersed after the impact,the diameter of the holes on the four-layer spaced plates can reach 2.4 times,3.04 times,5.36 times and 2.68 times of the diameter of the projectile.Besides,the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate.Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE,the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE.The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material,and formed a large area of ablation marks on the last three target plates.
基金supported by the National Natural Science Foundation of China(61272011)
文摘In order to solve the problem that the ripple-effect analy- sis for the operational architecture of air defense systems (OAADS) is hardly described in quantity with previous modeling approaches, a supernetwork modeling approach for the OAADS is put for- ward by extending granular computing. Based on that operational units and links are equal to different information granularities, the supernetwork framework of the OAADS is constructed as a “four- network within two-layer” structure by forming dynamic operating coalitions, and measuring indexes of the ripple-effect analysis for the OAADS are given combining with Laplace spectral radius. In this framework, via analyzing multidimensional attributes which inherit relations between operational units in different granular scales, an extended granular computing is put forward integrating with a topological structure. Then the operation process within the supernetwork framework, including transformation relations be- tween two layers in the vertical view and mapping relations among functional networks in the horizontal view, is studied in quantity. As the application case shows, comparing with previous modeling approaches, the supernetwork model can validate and analyze the operation mechanism in the air defense architecture, and the ripple-effect analysis can be used to confirm the key operational unit with micro and macro viewpoints.
基金supported by the National Natural Science Foundation of China(71171197)the National Basic Research Program of China(973 Program)(613154)
文摘Optimization of architecture design has recently drawn research interest. System deployment optimization (SDO) refers to the process of optimizing systems that are being deployed to activi- ties. This paper first formulates a mathematical model to theorize and operationalize the SDO problem and then identifies optimal so- lutions to solve the SDO problem. In the solutions, the success rate of the combat task is maximized, whereas the execution time of the task and the cost of changes in the system structure are mini- mized. The presented optimized algorithm generates an optimal solution without the need to check the entire search space. A novel method is finally proposed based on the combination of heuristic method and genetic algorithm (HGA), as well as the combination of heuristic method and particle swarm optimization (HPSO). Experi- ment results show that the HPSO method generates solutions faster than particle swarm optimization (PSO) and genetic algo- rithm (GA) in terms of execution time and performs more efficiently than the heuristic method in terms of determining the best solution.
基金supported by the National Natural Science Foundation of China(U1435220)
文摘How to recognize targets with similar appearances from remote sensing images(RSIs) effectively and efficiently has become a big challenge. Recently, convolutional neural network(CNN) is preferred in the target classification due to the powerful feature representation ability and better performance. However,the training and testing of CNN mainly rely on single machine.Single machine has its natural limitation and bottleneck in processing RSIs due to limited hardware resources and huge time consuming. Besides, overfitting is a challenge for the CNN model due to the unbalance between RSIs data and the model structure.When a model is complex or the training data is relatively small,overfitting occurs and leads to a poor predictive performance. To address these problems, a distributed CNN architecture for RSIs target classification is proposed, which dramatically increases the training speed of CNN and system scalability. It improves the storage ability and processing efficiency of RSIs. Furthermore,Bayesian regularization approach is utilized in order to initialize the weights of the CNN extractor, which increases the robustness and flexibility of the CNN model. It helps prevent the overfitting and avoid the local optima caused by limited RSI training images or the inappropriate CNN structure. In addition, considering the efficiency of the Na¨?ve Bayes classifier, a distributed Na¨?ve Bayes classifier is designed to reduce the training cost. Compared with other algorithms, the proposed system and method perform the best and increase the recognition accuracy. The results show that the distributed system framework and the proposed algorithms are suitable for RSIs target classification tasks.
文摘This paper summarized the classification of colorful tree species and the application principles on landscape architecture and briefly introduced the present application situation of colorful tree species in China. It also raised suggestions related to the introduction and application of the colorful tree species.
基金Project(11174077)supported by the National Natural Science Foundation of ChinaProject(11JJ3079)supported by the Hunan Provincial Natural Science Foundation of ChinaProjects(12C0237,11C0844)supported by the Science Research Program of Education Department of Hunan Province,China
文摘High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.
文摘To analyze the behavioral model of the command,control,communication,computer,intelligence,surveillance,reconnaissance(C4ISR)architecture,we propose an executable modeling and analyzing approach to it.First,the meta concept model of the C4ISR architecture is introduced.According to the meta concept model,we construct the executable meta models of the C4ISR architecture by extending the meta models of fUML.Then,we define the concrete syntax and executable activity algebra(EAA)semantics for executable models.The semantics functions are introduced to translating the syntax description of executable models into the item of EAA.To support the execution of models,we propose the executable rules which are the structural operational semantics of EAA.Finally,an area air defense of the C4ISR system is used to illustrate the feasibility of the approach.
基金supported by the National Natural Science Foundation of China(6067406960574056).
文摘To improve the agility, dynamics, composability, reusability, and development efficiency restricted by monolithic federation object model (FOM), a modular FOM is proposed by high level architecture (HLA) evolved product development group. This paper reviews the state-of-the-art of HLA evolved modular FOM. In particular, related concepts, the overall impact on HLA standards, extension principles, and merging processes are discussed. Also permitted and restricted combinations, and merging rules are provided, and the influence on HLA interface specification is given. The comparison between modular FOM and base object model (BOM) is performed to illustrate the importance of their combination. The applications of modular FOM are summarized. Finally, the significance to facilitate compoable simulation both in academia and practice is presented and future directions are pointed out.
基金Project(2017JM5077)supported by the Natural Science Basic Research Plan in Shaanxi Province,ChinaProjects(300102259109,300102259306)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Asphalt mixture pavement reheating is one of the important steps in hot in-place recycling(HIR).To improve the heating speed of asphalt pavement in HIR,based on the numerical analysis model of asphalt mixture heating process,a new multi-layer low-temperature heating method(MLHM)was proposed.Considering input heat flux,the thermal capacity and thermal resistance of asphalt mixture,the heat transfer model was established based on energy conservation law.By heating the asphalt mixture in layers,it changes the situation that the heat energy can only be input from the upper surface of the asphalt mixture pavement.Through the simulation of the heating method of asphalt mixture in the existing technology,the result shows that the existing heating methods lead to serious aging or charring of the asphalt mixture.By MLHM,the upper and the bottom of the asphalt mixture are heated at the same time,and the heating temperature is lower than other heat methods,which not only reduces the heating thickness and increases the heating area of the asphalt mixture pavement,but also improves the heating speed,saves the energy resource and ensures the heating quality.Especially,by MLHM,the heating uniformity is better and speed is faster.