期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于用户数据特征深度挖掘的快速图书检索算法
1
作者 窦淑庆 刘思豆 《现代电子技术》 北大核心 2025年第14期137-142,共6页
针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec... 针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec作为基础框架进行多模态特征提取,并利用双塔深度匹配模型构建了用户MLP塔和图书改进CNN塔,对特征进行充分细致的多维分析。模型通过将实时反馈机制Kafka-Redis流处理算法与会话注意力加权融合,最终实现了场景化的推荐。实验测试结果显示,NDCG@10指标较最优基准提升了约21.0%,行为反馈延迟在峰值500 QPS流量下小于等于3.5 s。表明所提算法能够为知识服务场景提供兼具准确性、时效性与场景适应性的信息推荐解决方案。 展开更多
关键词 用户画像 双向编码器表示技术 双塔深度匹配模型 多层感知器 卷积神经网络 推荐算法
在线阅读 下载PDF
基于TAGE与基于神经网络分支预测器的比较与分析
2
作者 郑伟巍 郑重 +1 位作者 陈微 陆洪毅 《计算机工程与科学》 北大核心 2025年第8期1364-1380,共17页
随着处理器性能需求的不断增长,超标量和深度流水线技术被广泛应用于现代微处理器中,从而提升指令执行的并行性。然而,程序中的条件分支指令对流水线的连续执行构成了挑战,限制了指令并行执行的能力。为解决这一控制冒险问题,分支预测... 随着处理器性能需求的不断增长,超标量和深度流水线技术被广泛应用于现代微处理器中,从而提升指令执行的并行性。然而,程序中的条件分支指令对流水线的连续执行构成了挑战,限制了指令并行执行的能力。为解决这一控制冒险问题,分支预测技术应运而生,其核心在于预先推测分支指令的跳转方向和地址,进而最小化因分支指令引起的流水线停顿延迟。基于统一的性能评估框架,对比分析了当前主流的基于TAGE的分支预测器和基于神经网络的分支预测器。实验结果表明,不同分支预测器对特定轨迹存在不同的偏好性,融合多种预测机制或可以进一步挖掘预测潜能。同时,执行任务上下文对分支预测性能的影响不容忽视,特别是在多进程环境中。此外,实验还发现当前CNN预测器在处理复杂分支时的性能不稳定,整体表现未能超越基准TAGE-SC-L预测器,仍需继续优化。 展开更多
关键词 分支预测 TAGE 神经网络 感知机 CNN模型
在线阅读 下载PDF
基于融合TC-WREM模型的热带气旋大风半径估算研究
3
作者 周必高 鲁小琴 +4 位作者 吴贤笃 仇欣 谢海华 朱忠勇 郑建琴 《热带气象学报》 CSCD 北大核心 2024年第5期736-744,共9页
利用2001—2020年美国联合台风警报中心(JTWC)热带气旋(Tropical Cyclone,TC)最佳资料数据集和静止气象卫星云图,建立了基于多层感知器神经网络模型(Multi-Layer Perceptron,MLP)和卷积神经网络(Convolutional Neural Network,CNN)融合... 利用2001—2020年美国联合台风警报中心(JTWC)热带气旋(Tropical Cyclone,TC)最佳资料数据集和静止气象卫星云图,建立了基于多层感知器神经网络模型(Multi-Layer Perceptron,MLP)和卷积神经网络(Convolutional Neural Network,CNN)融合的TC大风半径估算模型(TC Wind Radii Estimation Model,TC-WREM)。该模型利用MLP和CNN分别对TC属性数据和卫星云图中与TC大风半径相关联的核心特征进行预提取,最终通过融合TC-WREM模型开展大风半径估算。融合的TC-WREM模型能实现对TC属性数据和卫星云图底层特征的深度客观挖掘,较单独的MLP和CNN模型的估算误差降低7%~24%。以TC近地面8级大风半径(R8)估算为例,针对2021年台风“烟花”的独立样本估算检验显示分象限R8估算平均绝对误差(Mean Absolute Error,MAE)分别为39、33、40和51 km,均值为41 km,误差中位值约40 km,优于业务估算精度(为大风半径的25%~40%)及西北太平洋和大西洋同类研究估算结果。由于融合TC-WREM模型的输入为易获取的TC属性数据和静止气象卫星云图,因此该模型易于在业务中进行推广,从而可改善国内TC大风半径估算模型缺乏的现状。 展开更多
关键词 热带气旋 大风半径估算 卷积神经网络模型 多层感知器神经网络模型 融合TC-WREM模型 西北太平洋
在线阅读 下载PDF
广义知识存储原理与高阶广义神经网络 被引量:9
4
作者 胡瑞敏 徐正全 +1 位作者 姚天任 李德仁 《电子学报》 EI CAS CSCD 北大核心 1996年第7期59-65,共7页
本文在仔细分析神经网络知识存储方式的基础止,提出了高阶广义神经网络的概念和构成原则,讨论了其中一种典型的智能神经元模型以及据此实现的高阶广义神经网络的各项性能,最后将其与标准的BP算法进行了比较。
关键词 神经网络 模型 学习算法 BP算法 多层前馈网络
在线阅读 下载PDF
多层感知器信用评价模型研究 被引量:14
5
作者 庞素琳 王燕鸣 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期118-122,共5页
建立多层感知器 (MLP)神经网络信用评价模型 ,用来对我国 2 0 0 0年 96家上市公司进行信用评级。按照各上市公司的经营状况分为“好”、“中”、“差”三类 ,每一类由 32家上市公司构成数据样本。对于每一家上市公司 ,主要考虑其经营状... 建立多层感知器 (MLP)神经网络信用评价模型 ,用来对我国 2 0 0 0年 96家上市公司进行信用评级。按照各上市公司的经营状况分为“好”、“中”、“差”三类 ,每一类由 32家上市公司构成数据样本。对于每一家上市公司 ,主要考虑其经营状况的四个主要财务指标 :每股收益 ,每股净资产 ,净资产收益率和每股现金流量 ,所有数据都来自于 2 0 0 0年上市公司年报。对于MLP网络结构 ,隐层结点的个数是采用试验的方法来确定的 ,先从 1个开始 ,然后逐个逐个地增加 ,一直增加到不能再改善网络性能为止。仿真结果表明 ,多层感知器信用评价模型分类的准确率达到 79 17%。此外 ,还详细给出MLP网络模型的学习算法和步骤。 展开更多
关键词 神经网络 多层感知器 信用评价模型
在线阅读 下载PDF
电液伺服系统的神经网络建模方法研究 被引量:3
6
作者 童仲志 邢宗义 +2 位作者 张媛 高强 贾利民 《高技术通讯》 EI CAS CSCD 北大核心 2009年第6期620-626,共7页
针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法。研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网... 针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法。研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网络,采用5种典型学习算法构造了3种多层感知器神经网络和2种径向基函数神经网络,并结合自动定深电液伺服系统的工程实例,详细分析了这5种神经网络在电液伺服系统中的建模性能。研究结果表明,采用正交最小二乘算法的径向基函数神经网络最适合电液伺服系统的建模。 展开更多
关键词 电液伺服系统 多层感知器神经网络(MLPNN) 径向基函数神经网络(RBFNN) 建模
在线阅读 下载PDF
基于深度学习长短期记忆神经网络的有色金属期货市场预测研究 被引量:9
7
作者 沈虹 李旭 潘琪 《南京理工大学学报》 CAS CSCD 北大核心 2021年第3期366-374,共9页
为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及... 为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及线性自回归移动平均(ARIMA)模型进行对比研究。数据源于Wind数据库和国际货币基金组织(IMF)数据库。使用Python深度学习软件模拟预测有色金属期货价格,结果显示:有色金属期货市场长期预测中,LSTM模型的预测表现略逊于ARIMA模型,MLP模型预测效果不理想;短期预测中,LSTM模型的预测结果和ARIMA模型相近,均优于MLP模型;LSTM模型与MLP模型相比,模型的稳定性和预测的精确度都更加出色。LSTM模型可作为ARIMA模型的最优替代之一。 展开更多
关键词 深度学习 长短期记忆模型 神经网络 多层感知器模型 自回归移动平均模型 有色金属 期货市场 价格预测
在线阅读 下载PDF
递归多层感知器的稳定性分析——LMI方法 被引量:5
8
作者 刘妹琴 颜钢锋 《控制理论与应用》 EI CAS CSCD 北大核心 2003年第6期897-902,共6页
递归多层感知器(RMLP)在工程上应用比较多,但对其稳定性的研究还比较少.本文提出一种新的神经网络模型———标准神经网络模型(SNNM),通过状态空间扩展法,将RMLP转化为SNNM,而SNNM的稳定性分析可转化为一组线性矩阵不等式(LMI)的求解,利... 递归多层感知器(RMLP)在工程上应用比较多,但对其稳定性的研究还比较少.本文提出一种新的神经网络模型———标准神经网络模型(SNNM),通过状态空间扩展法,将RMLP转化为SNNM,而SNNM的稳定性分析可转化为一组线性矩阵不等式(LMI)的求解,利用Matlab/LMIToolbox求解LMI,从而判定RMLP的Lyapunov稳定性,并考虑非零阈值对稳定性的影响.该方法也适用于其他类型的递归神经网络(RNN)的稳定性分析. 展开更多
关键词 递归多层感知器 稳定性分析 LMI方法 状态空间扩展法 线性矩阵不等式 标准神经网络模型
在线阅读 下载PDF
融合上下文信息的深度推荐模型 被引量:5
9
作者 胡朝举 郑浩 《计算机应用研究》 CSCD 北大核心 2021年第4期1074-1078,共5页
目前,在基于文档信息的推荐任务中,传统基于文档的混合推荐算法仍依赖于浅层的线性模型,当评分数据变得庞大且复杂时,其推荐性能往往不太理想。针对此问题,提出一种深度融合模型(DeepFM),该模型能够在完全捕获文本信息的同时也能很好地... 目前,在基于文档信息的推荐任务中,传统基于文档的混合推荐算法仍依赖于浅层的线性模型,当评分数据变得庞大且复杂时,其推荐性能往往不太理想。针对此问题,提出一种深度融合模型(DeepFM),该模型能够在完全捕获文本信息的同时也能很好地处理复杂且稀疏的评分数据。DeepFM由两个并行的神经网络组成,其中一路神经网络使用多层感知器提取评分矩阵的行向量信息从而获得用户的潜在特征向量,另一路则使用MLP和卷积神经网络(CNN)共同建模从而提取额外有关项目的文本信息得到项目潜在特征向量。最后,通过构建融合层将用户特征向量和项目特征向量进行融合得出预测评分。实验结果表明,DeepFM在MovieLens数据集和亚马逊数据集上的性能优于主流的推荐模型。 展开更多
关键词 深度学习 多层感知器 卷积神经网络 融合模型
在线阅读 下载PDF
基于神经网络的三维模型视觉特征分析
10
作者 韦伟 杨育彬 +1 位作者 林金杰 阮佳彬 《计算机工程与应用》 CSCD 北大核心 2008年第21期174-178,216,共6页
首先从形状、颜色、纹理材质三个主要视觉特性入手,阐述模型的特征描述符,设计三元组视觉特征向量用于神经网络进行模型分类。具体基于感知器神经网络、Hopfield神经网络分别实现了对三维物体的分类。实验表明,基于神经网络的分类器能... 首先从形状、颜色、纹理材质三个主要视觉特性入手,阐述模型的特征描述符,设计三元组视觉特征向量用于神经网络进行模型分类。具体基于感知器神经网络、Hopfield神经网络分别实现了对三维物体的分类。实验表明,基于神经网络的分类器能对基于视觉特征描述的三维物体进行有效识别。 展开更多
关键词 三维模型 视觉特征 感知器神经网络 HOPFIELD网络 三维物体分类
在线阅读 下载PDF
混合语音识别系统的一种新的简化神经网络结构
11
作者 邓伟 《数据采集与处理》 CSCD 2002年第1期25-28,共4页
研究适用于隐马尔可夫模型 ( HMM)结合多层感知器 ( MLP)的小词汇量混合语音识别系统的一种简化神经网络结构。利用小词汇量混合语音识别系统中的 HMM状态所形成的规则的二维阵列 ,对状态观测概率进行分解。基于这种利用 HMM的二维结构... 研究适用于隐马尔可夫模型 ( HMM)结合多层感知器 ( MLP)的小词汇量混合语音识别系统的一种简化神经网络结构。利用小词汇量混合语音识别系统中的 HMM状态所形成的规则的二维阵列 ,对状态观测概率进行分解。基于这种利用 HMM的二维结构特性的方法 ,实现了用一种由多个简单的 MLP所组成的简化神经网络结构来估计状态观测概率。理论分析和语音识别实验的结果都表明 ,这种简化神经网络结构在性能上优于 Fran-co等人提出的简化神经网络结构。 展开更多
关键词 隐马尔可夫模型 多层感知器 神经网络结构 混合语音识别系统
在线阅读 下载PDF
生物医学事件触发词识别研究 被引量:6
12
作者 张仲华 苏方方 姬东鸿 《计算机应用研究》 CSCD 北大核心 2017年第3期661-664,670,共5页
触发词的识别是生物医学事件抽取的一个关键步骤。传统的采用字典或规则的方法过于依赖字典或规则的建立,一般的机器学习方法则需设计复杂的特征,而且大多数系统采用串行方法会导致错误的传播。从算法和整体流程两个维度进行优化,采用... 触发词的识别是生物医学事件抽取的一个关键步骤。传统的采用字典或规则的方法过于依赖字典或规则的建立,一般的机器学习方法则需设计复杂的特征,而且大多数系统采用串行方法会导致错误的传播。从算法和整体流程两个维度进行优化,采用了基于神经网络的事件触发词识别和事件类型判别联合结构预测模型,既简化人工干预,又减少错误传播。实验结果表明提出的方法取得了很好的性能,为生物事件抽取奠定了可靠的基础。 展开更多
关键词 生物事件 触发词 神经网络 感知机 联合模型
在线阅读 下载PDF
CO_(2)气体保护焊的焊缝形貌建模及虚拟化仿真系统开发 被引量:1
13
作者 肖罡 欧敏 +3 位作者 李时春 万可谦 周妃四 杨钦文 《机械工程材料》 CAS CSCD 北大核心 2023年第11期67-73,共7页
建立了CO_(2)气体保护焊工艺参数与焊缝几何尺寸(熔宽、熔深)之间的多层感知机神经网络预测模型,并基于焊接试验数据训练模型,确定了模型的数学解析式;通过分析焊缝截面和表面形貌特征,建立焊缝形貌的虚拟化仿真模型;通过python编程开... 建立了CO_(2)气体保护焊工艺参数与焊缝几何尺寸(熔宽、熔深)之间的多层感知机神经网络预测模型,并基于焊接试验数据训练模型,确定了模型的数学解析式;通过分析焊缝截面和表面形貌特征,建立焊缝形貌的虚拟化仿真模型;通过python编程开发了焊缝形貌预测与虚拟化仿真系统。结果表明:所建立的多层感知机神经网络预测模型对熔宽预测的最大偏差为0.097 mm,模型拟合优度为0.999269,对熔深预测的最大偏差为0.051 mm,模型拟合优度为0.999567;建立了以焊缝熔深和熔宽为输入变量的焊缝截面形貌数学模型和以焊缝熔宽为输入变量的表面形貌数学模型。 展开更多
关键词 CO_(2)气体保护焊 多层感知机神经网络模型 焊缝形貌建模 虚拟化仿真系统
在线阅读 下载PDF
人工神经网络和遗传算法在微带交指电容器设计中的应用 被引量:6
14
作者 张欣 陈如山 《微波学报》 CSCD 北大核心 2003年第4期54-57,66,共5页
将神经网络技术 (ANN)与遗传算法 (GA)相结合对交指电容器 (IDC)进行了分析与设计。采用多层感知器神经网络 (MLPNN)建立了交指电容器的模型 ,并利用遗传算法的全局搜索能力根据实际需要优化设计交指电容器的结构。模型训练样本的S参数... 将神经网络技术 (ANN)与遗传算法 (GA)相结合对交指电容器 (IDC)进行了分析与设计。采用多层感知器神经网络 (MLPNN)建立了交指电容器的模型 ,并利用遗传算法的全局搜索能力根据实际需要优化设计交指电容器的结构。模型训练样本的S参数由时域有限差分 (FDTD)方法得到。结果证明该方法具有较高的准确性 。 展开更多
关键词 人工神经网络 遗传算法 交指电容器 多层感知器神经网络 时域有限差分 微波电路 CAD
在线阅读 下载PDF
基于特征性脂肪酸和甘油三酯指标的油茶籽油掺伪定性鉴别模型对比分析 被引量:2
15
作者 孙婷婷 刘剑波 +2 位作者 任佳丽 钟海雁 周波 《中国油脂》 CAS CSCD 北大核心 2023年第1期66-73,共8页
为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比... 为解决油茶籽油掺伪其他植物油的定性鉴别问题,在油茶籽油中分别掺入大豆油、花生油、葵花籽油、棉籽油、葡萄籽油、菜籽油、棕榈油和米糠油,设置高和低两种不同掺伪梯度,基于14个特征性脂肪酸和甘油三酯指标,运用Python语言构建并对比分析了二分类决策树模型、多分类决策树模型和多层感知机人工神经网络(MLP-ANN)模型用于油茶籽油掺伪定性鉴别的效果。结果表明:高和低掺伪梯度下,二分类决策树模型对油茶籽油掺伪其他植物油的定性鉴别的准确率均达到0.95以上;多分类决策树模型的精确率和准确率在高掺伪梯度下均达到了0.95,但在低掺伪梯度下仅为0.90;在高和低掺伪梯度下,MLP-ANN模型对油茶籽油掺伪定性鉴别的平均精确率均达到0.98,准确率分别达到0.97和0.98。相比于决策树模型,MLP-ANN模型能很好地实现油茶籽油掺伪定性鉴别。 展开更多
关键词 油茶籽油 决策树模型 多层感知机人工神经网络模型 定性鉴别 脂肪酸 甘油三酯
在线阅读 下载PDF
基于变分模态分解与集成深度模型的锂电池剩余寿命预测方法 被引量:34
16
作者 王冉 后麒麟 +2 位作者 石如玉 周雁翔 胡雄 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第4期111-120,共10页
锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与集成深度模型... 锂电池剩余寿命(RUL)预测对于锂电池安全使用至关重要。由于锂电池使用过程中存在容量再生现象和随机干扰等因素,导致单一尺度信号下单一模型的预测精度及泛化性能较差。针对上述问题,提出一种新的基于变分模态分解(VMD)与集成深度模型的锂电池剩余寿命预测方法。首先,采用变分模态分解将锂电池容量数据进行多尺度分解,得到信号的全局退化趋势和局部随机波动分量;然后,分别采用多层感知机(MLP)和长短期记忆神经网络(LSTM)对全局退化趋势和各波动分量进行建模;最后,将各个分量子模型的预测结果进行集成,获得最终的锂电池剩余寿命预测结果。实验结果表明,该方法具有较高的预测精度与稳定性。 展开更多
关键词 锂电池剩余寿命预测 变分模态分解 长短期记忆神经网络 多层感知机 集成深度模型
在线阅读 下载PDF
基于BAS-BP神经网络的多应力加速寿命试验预测方法 被引量:6
17
作者 葛峰 韩建立 高松 《兵工自动化》 2020年第6期5-9,41,共6页
为解决多应力条件下加速寿命试验中建立复合加速模型困难、模型参数难以求解以及建模过程中通常忽略应力间耦合作用的问题,根据天牛须搜索建立改进的BP神经网络模型。使用多应力加速寿命试验中收集的4组应力水平的失效数据对BAS-BP神经... 为解决多应力条件下加速寿命试验中建立复合加速模型困难、模型参数难以求解以及建模过程中通常忽略应力间耦合作用的问题,根据天牛须搜索建立改进的BP神经网络模型。使用多应力加速寿命试验中收集的4组应力水平的失效数据对BAS-BP神经网络模型进行训练,对第5组应力水平下的可靠度与失效时间进行预测。利用平均相对误差、拟合优度2个参数对模型的预测结果进行评价,并与BP神经网络的预测结果进行对比。结果表明,BAS-BP神经网络具有更好的准确性及鲁棒性。 展开更多
关键词 天牛须算法 多层感知神经网络 多应力加速模型 预测方法
在线阅读 下载PDF
海南东寨港国家级自然保护区团水虱神经网络预测模型的构建
18
作者 岑选才 史丹妮 +3 位作者 钟梦滢 李诗川 黄丹慜 郭霞 《林业与环境科学》 2023年第2期26-31,共6页
为预测团水虱的数量,减轻其对红树林植物的危害,采用多层感知器神经网络分析方法,对2021年3月至9月团水虱发生地的水温、风速、大气压、pH值、溶解氧、高锰酸盐指数、氨氮、总磷、总氮含量等因素进行分析。结果表明,总磷、水温是团水虱... 为预测团水虱的数量,减轻其对红树林植物的危害,采用多层感知器神经网络分析方法,对2021年3月至9月团水虱发生地的水温、风速、大气压、pH值、溶解氧、高锰酸盐指数、氨氮、总磷、总氮含量等因素进行分析。结果表明,总磷、水温是团水虱数量的主要因子,其拟合精度较好,平均绝对百分误差(MAPE)为0.120 2,均方误差(MSE)为85.486 1。使用该模型对2022年10月团水虱数量进行预测,其预测值为34.42/dm^(3),结果较为精确。 展开更多
关键词 团水虱 神经网络 多层感知器 预测模型
在线阅读 下载PDF
印度中央邦马尔瓦地区利用人工神经网络和回归模型预测蒸腾量的比较(摘选)
19
作者 Ajai Singh Jain VK Jayanta Dutta 《农业工程》 2013年第2期104-106,80,共4页
蒸发是水循环的一个重要组成部分,对蒸发量的估算是对水资源和灌溉水量有效利用的一个重要手段。该研究旨在利用多元线性回归模型、多层感知器(MLP)和人工神经网络(ANN)模型模拟印度中央邦马尔瓦地区周蒸发量。利用4种不同天气变量组合... 蒸发是水循环的一个重要组成部分,对蒸发量的估算是对水资源和灌溉水量有效利用的一个重要手段。该研究旨在利用多元线性回归模型、多层感知器(MLP)和人工神经网络(ANN)模型模拟印度中央邦马尔瓦地区周蒸发量。利用4种不同天气变量组合训练神经网络模型。多元线性回归模型只将最高温和相对湿度作为输入值,但是模拟结果不令人满意。MLP模型采用的数据集包括最高和最低温度、风速和相对湿度,在训练和验证中都取得了比较好的结果。MLP模型可以用来模拟周开放式蒸发皿蒸发量,估算缺失数据,并可以作为替代模型以验证蒸发量测定值。降雨量数据并不能改善模型性能。 展开更多
关键词 蒸发皿蒸发量 多层感知器模型 多元线性回归 人工神经网络 降雨量 模拟
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部