期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
动静图融合和时序流注意力网络用于交通流预测
1
作者 闫敬 王祥 郑铮 《兵工自动化》 北大核心 2025年第5期66-70,共5页
为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correla... 为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correlation modeling,TCM)模块替换流注意力机制的线性变换方法,以增强模型的时序建模能力。在4个真实世界的交通数据集上进行了大量实验。实验结果表明:所提出的模型具有优越的性能,并且明显优于基线。 展开更多
关键词 交通流预测 时空相关性 流注意力机制 图卷积网络 特征融合
在线阅读 下载PDF
多因素融合下基于AGC-LSTM的短时交通速度预测
2
作者 陈雨佳 高明霞 +1 位作者 向万里 莫俊文 《现代电子技术》 北大核心 2025年第18期9-16,共8页
为了更准确地预测快速变化的城市环境中短时交通速度的动态变化,在考虑历史数据、天气因素和周围兴趣点(POI)的基础上,进一步融入路况因素,构建了特征融合组件(EF-Component)。基于现有深度学习模型,研究多种因素作用下融合图卷积网络(G... 为了更准确地预测快速变化的城市环境中短时交通速度的动态变化,在考虑历史数据、天气因素和周围兴趣点(POI)的基础上,进一步融入路况因素,构建了特征融合组件(EF-Component)。基于现有深度学习模型,研究多种因素作用下融合图卷积网络(GCN)、长短期记忆(LSTM)网络和注意力机制的城市短时交通速度预测模型(EF-AGC-LSTM)。先利用特征融合组件将多种影响因素进行综合,再利用GCN和LSTM提取交通速度的时空特征,通过将GCN嵌入到LSTM门控计算中来同步获取数据的时空特征;然后利用注意力机制自动识别并加强关键外部因素的影响特征,提升模型的性能表现。在深圳市罗湖区的速度数据集上进行实例验证,结果显示:与基线模型相比,EF-AGC-LSTM的预测效果有较大提升,与传统的GCN-LSTM模型相比,预测的平均绝对误差(MAE)和均方根误差(RMSE)分别降低4.3%和3.3%,准确率提高1.4%。此外,在引入路况因素后,预测的MAE和RMSE分别降低了1.22%和0.87%。综合考虑多种影响因素可以使得短时交通速度的预测效果得到进一步提升,且EF-AGC-LSTM模型可以良好地实现多因素融合下的短时交通速度预测,满足城市管理的需要。 展开更多
关键词 智能交通 短时交通速度预测 特征融合 组合深度学习 图卷积网络 长短期记忆网络 注意力机制
在线阅读 下载PDF
基于平行多尺度时空图卷积网络的三维人体姿态估计算法
3
作者 杨红红 刘泓希 +1 位作者 张玉梅 吴晓军 《软件学报》 北大核心 2025年第5期2151-2166,共16页
针对基于图卷积神经网络(GCN)的人体姿态估计方法不能充分聚合关节点时空特征、限制判别性特征提取的问题,构造基于平行多尺度时空图卷积的网络模型(PMST-GNet),提高三维人体姿态估计的性能.该模型首先设计对角占优的时空注意力图卷积(D... 针对基于图卷积神经网络(GCN)的人体姿态估计方法不能充分聚合关节点时空特征、限制判别性特征提取的问题,构造基于平行多尺度时空图卷积的网络模型(PMST-GNet),提高三维人体姿态估计的性能.该模型首先设计对角占优的时空注意力图卷积(DDA-STGConv),构建跨域时空邻接矩阵,对骨架关节点信息进行基于自约束和注意力机制约束的建模,增强节点间的信息交互;然后,通过设计图拓扑聚合函数构造不同的图拓扑结构,以DDA-STGConv为基本单元构建平行多尺度子网络模块(PM-SubGNet);最后,为了更好地提取骨架关节的上下文信息,设计多尺度特征交叉融合模块(MFEB),实现平行子图网络之间多尺度信息的交互,提高GCN的特征表示能力.在主流3D姿态估计数据集Human3.6M和MPI-INF-3DHP数据集上的对比实验结果表明,所提PMST-GNet模型在三维人体姿态估计中具有较好的效果,优于Sem-GCN、GraphSH、UGCN等当前基于GCN网络的主流算法. 展开更多
关键词 三维人体姿态估计 对角占优的时空注意力图卷积 平行多尺度子网络 多尺度特征交叉融合
在线阅读 下载PDF
融合多图卷积的表格学习模型
4
作者 王秋雨 赵韦鑫 +2 位作者 颜怀柏 杨炬龙 彭舰 《计算机工程与设计》 北大核心 2025年第9期2570-2577,共8页
针对现有的表格学习方法在平衡特征与实例关系、构建图表示过程复杂且关注角度单一等问题,本文提出一种基于图神经网络的表格学习模型。该模型分别从表格数据的行和列角度初始化特征嵌入图与实例交互图,融合了数据的局部和全局信息。模... 针对现有的表格学习方法在平衡特征与实例关系、构建图表示过程复杂且关注角度单一等问题,本文提出一种基于图神经网络的表格学习模型。该模型分别从表格数据的行和列角度初始化特征嵌入图与实例交互图,融合了数据的局部和全局信息。模型通过结合图卷积和图注意力的双核卷积模块增强节点嵌入表示,利用基于动态门控的层级池化模块降低图复杂度并保留重要节点差异信息,同时引入自适应融合模块平衡特征与实例关系并提升模型准确性。在5个公开数据集上的实验结果表明,模型性能提升了1~3个百分点;大量消融实验验证了各模块对提升模型学习能力的重要性。 展开更多
关键词 表格学习 特征嵌入 实例交互 图卷积网络 图注意力网络 层级池化 自适应融合
在线阅读 下载PDF
基于图注意力与多尺度并行融合卷积的虚假数据注入攻击定位检测
5
作者 席磊 陈采玉 +1 位作者 陈洪军 李宗泽 《高电压技术》 北大核心 2025年第4期1763-1772,共10页
虚假数据注入攻击严重威胁电力信息物理系统的安全,而传统攻击检测方法由于没有考虑量测数据间的拓扑并且特征提取能力差,无法精确识别攻击并定位受攻击节点。因此,该文提出一种基于图注意力与多尺度并行融合卷积模型的虚假数据注入攻... 虚假数据注入攻击严重威胁电力信息物理系统的安全,而传统攻击检测方法由于没有考虑量测数据间的拓扑并且特征提取能力差,无法精确识别攻击并定位受攻击节点。因此,该文提出一种基于图注意力与多尺度并行融合卷积模型的虚假数据注入攻击定位检测方法。该方法通过图注意力网络动态捕捉量测数据间的拓扑关系以提升检测方法的定位检测性能;采用结合注意力特征融合模块增强的并行卷积神经网络提取数据的多尺度特征进一步提高检测方法的学习能力和泛化能力,以实现高精度的定位检测。通过在IEEE-14节点测试系统和IEEE-57节点测试系统中进行评估研究,与现有的定位检测方法相比,该文所提方法具有更优的F1值,分别高达98.40%、95.29%。因此,该方法能够更好地对虚假数据注入攻击进行定位检测。 展开更多
关键词 虚假数据注入攻击 电力信息物理系统 图注意力网络 并行卷积 特征融合
在线阅读 下载PDF
架空输电线路覆冰厚度图卷积神经网络预测模型构建与应用 被引量:1
6
作者 范晶晶 胡帆 +3 位作者 原辉 张娜 孟晓凯 王帅 《测绘通报》 北大核心 2025年第1期12-15,共4页
针对架空输电线路覆冰预测问题,本文提出了一种基于图卷积神经网络的预测模型。首先,整合空气相对湿度、风速、气温、导线表面温度、导线温度、环境湿度及导线拉力变化等相关数据,构建了一种包含架空输电线路拓扑结构和环境因素的图模型... 针对架空输电线路覆冰预测问题,本文提出了一种基于图卷积神经网络的预测模型。首先,整合空气相对湿度、风速、气温、导线表面温度、导线温度、环境湿度及导线拉力变化等相关数据,构建了一种包含架空输电线路拓扑结构和环境因素的图模型,将节点定义为线路的各个监测点,边则代表监测点之间的空间关系和环境影响;然后,利用图卷积神经网络对图模型进行特征提取,通过逐层传递节点信息捕捉节点间的相互影响,并引入注意力机制对不同节点的特征加权处理,提升预测性能;最后,使用历史覆冰数据进行监督学习,优化模型参数,确保泛化能力。试验结果表明,该模型在不同天气条件和线路环境下具有较高的预测精度和稳健性,为电力部门及时采取融冰措施提供了有效支持。 展开更多
关键词 覆冰预测 图卷积神经网络 注意力机制 架空输电线路 多源数据融合
在线阅读 下载PDF
基于扩展时间和时空特征融合图卷积网络的骨架行为识别
7
作者 徐永刚 孙琦烜 +2 位作者 李凡甲 程健维 戴佳俊 《计算机工程》 北大核心 2025年第4期281-292,共12页
在基于骨架的人体行为识别领域,图卷积网络(GCN)在近年来取得了很大的进展,但现有GCN大多将时间卷积和空间卷积简单串联,导致时空特征融合效果不佳。另外,现有模型还存在无法高效提取时间特征的问题。为此,提出扩展时间和时空特征融合... 在基于骨架的人体行为识别领域,图卷积网络(GCN)在近年来取得了很大的进展,但现有GCN大多将时间卷积和空间卷积简单串联,导致时空特征融合效果不佳。另外,现有模型还存在无法高效提取时间特征的问题。为此,提出扩展时间和时空特征融合图卷积网络(ETFF-GCN)。该网络采用通道聚合的方法对动态空间拓扑和时序特征进行一次融合,然后运用注意力机制进行二次融合,进一步增强融合效果。在此基础上,为了全面提取时序特征,采用多个不同大小的卷积核构建时域图卷积,以提取多尺度和多粒度的时间特征,并引入有效压缩激励模块进行特征增强,提升特征表达能力。在3个大型数据集上对所提出的方法进行评估,实验结果表明,该方法的性能优于现有的方法。 展开更多
关键词 人体骨架行为识别 图卷积网络 时空特征融合 注意力机制 扩展时间
在线阅读 下载PDF
基于骨骼数据和双流网络的跌倒检测方法
8
作者 王琰 王玫 +1 位作者 刘鑫 阚瑞祥 《桂林理工大学学报》 北大核心 2025年第1期120-126,共7页
针对老年人因摔倒后救助不及时而造成伤亡、给家庭和社会带来了严重负担,而及时发现老年人摔倒并通知其子女或者帮助其呼叫救助成为当前越来越迫切的需求的现状,以Kinect v2信息采集系统为平台,提出了一种基于特征融合与注意力机制优化... 针对老年人因摔倒后救助不及时而造成伤亡、给家庭和社会带来了严重负担,而及时发现老年人摔倒并通知其子女或者帮助其呼叫救助成为当前越来越迫切的需求的现状,以Kinect v2信息采集系统为平台,提出了一种基于特征融合与注意力机制优化的双流网络的跌倒检测方法,在有效提高跌倒检测准确率的同时,也避免了涉及用户隐私的问题。用骨骼点三维数据与骨骼向量夹角体现人体倾覆跌倒,通过图卷积神经网络(GCN)与双向门控循环单元(Bi-GRU)提取空域与时域特征,结合注意力机制与特征融合操作增强网络对跌倒行为特征信息的提取能力与学习能力,进一步提高老人跌倒事件检测的准确率。仿真结果表明,在实际场景测试与Florence 3D数据集中达到了较好的效果,验证了该方法的准确性与有效性。 展开更多
关键词 KINECT 注意力机制 特征融合 图卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于多尺度注意力和图神经网络的多模态医学实体识别研究
9
作者 韩普 刘森嶺 陈文祺 《数据采集与处理》 北大核心 2025年第4期922-933,共12页
随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任... 随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任务中存在图像细节信息损失和文本语义理解不足问题,提出一种基于多尺度注意力和图神经网络(Multi-scale attention and dependency parsing graph convolution,MADPG)的MMER模型。该模型一方面基于ResNet引入多尺度注意力机制,协同提取不同空间尺度融合的视觉特征,减少医学图像重要细节信息丢失,进而增强图像特征表示,补充文本语义信息;另一方面利用依存句法结构构建图神经网络,捕捉医学文本中词汇间复杂语法依赖关系,以丰富文本语义表达,促进图像文本特征深层次融合。实验表明,本文提出的模型在多模态中文医学数据集上F_(1)值达到95.12%,相较于主流的单模态和多模态实体识别模型性能得到了明显提升。 展开更多
关键词 多模态医学实体识别 多尺度注意力 图卷积神经网络 多模态融合 语义特征
在线阅读 下载PDF
面向注意力缺陷多动障碍分类的多分辨率时空融合图卷积网络
10
作者 宋笑影 郝春雨 柴利 《电子与信息学报》 北大核心 2025年第6期1927-1936,共10页
神经发育障碍疾病患者的精准分类是医学领域的一项重要挑战,对于疾病诊断和指导治疗至关重要。然而,现有基于图卷积网络(GCNs)的方法通常采用单一分辨率空间特征,忽视了多分辨率下的空间信息以及时间信息。为了克服上述局限性,该文提出... 神经发育障碍疾病患者的精准分类是医学领域的一项重要挑战,对于疾病诊断和指导治疗至关重要。然而,现有基于图卷积网络(GCNs)的方法通常采用单一分辨率空间特征,忽视了多分辨率下的空间信息以及时间信息。为了克服上述局限性,该文提出一种多分辨率时空融合图卷积网络(MSTF-GCN)。在多个分辨率空间下构建多个大脑功能连通性网络,使用支持向量机-递归特征消除提取最优空间特征。为了保留全局时间信息并使网络具有捕获信号不同层次变化的能力,将全局时间信号及其差分信号输入到时间卷积网络中学习复杂时间维度的依赖关系,提取时间特征。结合时空信息构建群体图,利用多通道图卷积网络灵活地融合不同分辨率的群体图数据,最后融入非成像数据信息生成有效的多通道多类型时空融合分类特征,有效提升了MSTF-GCN模型的分类性能。将MSTF-GCN应用于注意力缺陷多动障碍(ADHD)患者分类识别,在ADHD-200数据集两个成像站点上的分类准确率分别达到了75.92%和82.95%,实验结果优于已有的流行算法,验证了MSTF-GCN的有效性。 展开更多
关键词 多分辨率时空融合图卷积网络 时空融合 多分辨率 注意力缺陷多动障碍
在线阅读 下载PDF
基于链接关系预测的弯曲密集型商品文本检测 被引量:1
11
作者 耿磊 李嘉琛 +2 位作者 刘彦北 李月龙 李晓捷 《天津工业大学学报》 CAS 北大核心 2024年第4期50-59,74,共11页
针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷... 针对商品包装文本检测任务中弯曲密集型文本导致的错检、漏检问题,提出了一种由2个子网络组成的基于链接关系预测的文本检测框架(text detection network based on relational prediction,RPTNet)。在文本组件检测网络中,下采样采用卷积神经网络和自注意力并行的双分支结构提取局部和全局特征,并加入空洞特征增强模块(DFM)减少深层特征图在降维过程中信息的丢失;上采样采用特征金字塔与多级注意力融合模块(MAFM)相结合的方式进行多级特征融合以增强文本特征间的潜在联系,通过文本检测器从上采样输出的特征图中检测文本组件;在链接关系预测网络中,采用基于图卷积网络的关系推理框架预测文本组件间的深层相似度,采用双向长短时记忆网络将文本组件聚合为文本实例。为验证RRNet的检测性能,构建了一个由商品包装图片组成的文本检测数据集(text detection dataset composed of commodity packaging,CPTD1500)。实验结果表明:RPTNet不仅在公开文本数据集CTW-1500和Total-Text上取得了优异的性能,而且在CPTD1500数据集上的召回率和F值分别达到了85.4%和87.5%,均优于当前主流算法。 展开更多
关键词 文本检测 卷积神经网络 自注意力 特征融合 图卷积网络 双向长短时记忆网络
在线阅读 下载PDF
多源知识融合的方面级情感分析模型 被引量:1
12
作者 韩虎 郝俊 +1 位作者 张千锟 赵启涛 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第9期2688-2695,共8页
方面级情感分析(ABSA)是一项细粒度情感分析任务,其目的是针对评论语句中出现的特定方面给出对应的情感极性。现有的基于深度学习的ABSA方法大多侧重于评论语句语义和句法的挖掘,往往忽略了评论语句可能涉及的概念知识和情感程度信息。... 方面级情感分析(ABSA)是一项细粒度情感分析任务,其目的是针对评论语句中出现的特定方面给出对应的情感极性。现有的基于深度学习的ABSA方法大多侧重于评论语句语义和句法的挖掘,往往忽略了评论语句可能涉及的概念知识和情感程度信息。针对此问题,提出一种融合多源知识的神经网络模型,通过句法依赖揭示句子的结构框架、词共现捕捉单词之间的语义联系、情感网络和概念图谱的嵌入为模型提供情感和背景知识,共同实现评论语句上下文与评价方面的增强表示,并通过双交互注意力模式实现评论语句上下文与评价方面的协调优化。通过在4个公开数据集上的实验验证,该模型在ABSA任务中,准确率分别达到了75.00%、77.90%、81.55%、90.10%,与基准模型相比均有所提高。研究成果不仅验证了多源知识融合在ABSA任务中的有效性,也为未来的研究提供了新的思路和方法。 展开更多
关键词 方面级情感分析 图卷积网络 多源融合 知识图谱 交互注意力机制
在线阅读 下载PDF
融合自注意力和图卷积的多视图群组推荐 被引量:1
13
作者 王永贵 王芯茹 《计算机工程与应用》 CSCD 北大核心 2024年第8期287-295,共9页
为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群... 为了解决大多数现有的群组推荐仅仅从群组和用户的单一交互中学习群组表示,以及固定融合策略难以动态调整权重的问题。提出了一种融合自注意力和图卷积的多视图群组推荐模型(MVGR),设计了成员级、项目级和组级三个不同的视图,来捕捉群组、用户和项目三者之间的高阶交互信息,缓解数据稀疏问题,增强群组表示建模过程;对于项目级视图,利用基于二分图的图卷积神经网络来学习群组偏好向量以及项目嵌入;进一步提出了自适应融合组件来动态调整不同视图权重,得到最终的群组偏好向量。在两个真实数据集上的实验结果表明,与基线模型相比,MVGR模型的命中率(HR)和归一化折损累计增益(NDCG)在Mafengwo数据集上平均提高了8.89个百分点和1.56个百分点,在CAMRa2011数据集上平均提高了2.79个百分点和2.7个百分点。 展开更多
关键词 群组推荐 自注意力机制 图卷积神经网络 自适应融合
在线阅读 下载PDF
轻量化姿态估计时空增强图卷积模型下的矿工行为识别 被引量:3
14
作者 王建芳 段思源 +1 位作者 潘红光 景宁波 《工矿自动化》 CSCD 北大核心 2024年第11期34-42,共9页
基于骨架序列的行为识别模型具有速度快、算力要求低、模型简单等特点,图卷积神经网络在处理骨架序列数据时具有优势,而现有基于图卷积的矿工行为识别模型在高精度和低计算复杂度之间难以兼顾。针对该问题,提出了一种基于轻量化姿态估... 基于骨架序列的行为识别模型具有速度快、算力要求低、模型简单等特点,图卷积神经网络在处理骨架序列数据时具有优势,而现有基于图卷积的矿工行为识别模型在高精度和低计算复杂度之间难以兼顾。针对该问题,提出了一种基于轻量化姿态估计网络(Lite-HRNet)和多维特征增强时空图卷积网络(MEST-GCN)的矿工行为识别模型。Lite-HRNet通过目标检测器进行人体检测,利用卷积神经网络提取图像特征,并通过区域提议网络生成锚框,对每个锚框进行分类以判断是否包含目标;区域提议网络对被判定为目标的锚框进行边界框回归,输出人体边界框,并通过非极大值抑制筛选出最优检测结果;将每个检测到的人体区域裁剪出来并输入到Lite-HRNet,生成人体关键点骨架序列。MEST-GCN在时空图卷积神经网络(ST-GCN)的基础上进行改进:去除ST-GCN中的冗余层以简化模型结构,减少模型参数量;引入多维特征融合注意力模块M2FA。生成的骨架序列经MEST-GCN的BN层批量标准化处理后,由多维特征增强图卷积模块提取矿工行为特征,经全局平均池化层和Softmax层得到行为的置信度,获得矿工行为预测结果。实验结果表明:①MEST-GCN的参数量降低至1.87 Mib;②在以交叉主体和交叉视角为评价标准的公开数据集NTU60上,采用Lite-HRNet提取2D人体关键点坐标,基于Lite-HRNet和MEST-GCN的矿工行为识别模型的准确率分别达88.0%和92.6%;③在构建的矿工行为数据集上,基于Lite-HRNet和MEST-GCN的矿工行为识别模型的准确率达88.5%,视频处理速度达18.26帧/s,可以准确且快速地识别矿工的动作类别。 展开更多
关键词 矿工行为识别 人体关键点提取 骨架序列 图卷积 轻量化姿态估计网络 特征融合 多维特征融合注意力模块
在线阅读 下载PDF
融合双注意力机制的GNN多维时间序列预测 被引量:1
15
作者 范航舟 梅红岩 +2 位作者 赵勤 张兴 程耐 《智能系统学报》 CSCD 北大核心 2024年第5期1277-1286,共10页
针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism... 针对现有多维时间序列数据(multivariate time series,MTS)预测中变量间依赖关系捕获能力不足和时间序列数据多通道信息利用不充分的问题,提出一种融合双注意力机制的多维时间序列预测模型(feature fusion and dual attention mechanism based GNN,FFDA-GNN)。该模型将图神经网络与空间注意力机制融合,用于增强多变量之间依赖关系捕获能力;利用并行的多层膨胀卷积和通道注意力机制,对时间序列数据进行多通道的特征提取,实现对时间序列数据多通道信息的充分利用,从而提升预测性能。在经济、电力、交通3个领域数据集上与基准模型进行对比实验,该模型预测精度优于其他基准方法,有良好的可行性。 展开更多
关键词 多维时序预测 图神经网络 注意力机制 特征融合 时间卷积网络 深度学习 卷积神经网络 时空特征
在线阅读 下载PDF
基于时空依赖关系和特征融合的弱监督视频异常检测 被引量:1
16
作者 柳德云 李莹 +1 位作者 周震 吉根林 《数据采集与处理》 CSCD 北大核心 2024年第1期204-214,共11页
弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出... 弱监督视频异常检测由于抗干扰性强、数据标注要求低,成为视频异常事件检测研究的热点。在现有的工作中,大多数弱监督视频异常检测方法认为各个视频段独立同分布,单独判断每个视频段是否异常,忽略了视频段间的时空依赖关系。为此,提出了一种基于时空依赖关系和特征融合的弱监督视频异常检测方法,在保留视频段原始特征的同时,使用视频段之间的索引距离和特征相似程度拟合视频段的时间和空间依赖关系,构建视频段的关系特征。通过融合原始特征和关系特征,更好地表达视频的动态特性和时序关系。在UCF-Crime和ShanghaiTech两个基准数据集上进行了大量实验,实验结果表明所提方法的AUC指标优于其他方法,AUC值分别达到了80.1%和94.6%。 展开更多
关键词 视频异常事件检测 时空依赖关系 特征融合 图卷积神经网络 注意力机制
在线阅读 下载PDF
基于周期图卷积与多头注意力GRU组合的交通流量预测模型 被引量:4
17
作者 钟林岚 张安勤 田秀霞 《计算机应用研究》 CSCD 北大核心 2024年第4期1041-1046,共6页
为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network,PGCN)与多头注意力门控循环单元(multi-head attention gate... 为了捕获交通流量数据中复杂的时空动态变化关系以及周期性变化的特征,同时避免道路突发情况引起的误差累计效应,提出一种基于周期图卷积(periodic graph convolution network,PGCN)与多头注意力门控循环单元(multi-head attention gated recurrent unit,MAGRU)组合的交通流量预测模型。首先,模型的时空数据融合模块利用交通流量的周期相似性构建周期图,同时将空间和时间编码信息添加至交通流量序列数据;然后在时空特征提取模块中,GCN子模块捕获周期特征图中的空间特征,MAGRU子模块捕获序列数据中的时间特征;最后通过门控融合机制将两者提取的时空特征进行融合。模型在两个真实的交通流量数据集上进行了实验。结果表明,该模型相较于多个最新基准模型,在MAE、RMSE、MAPE三个预测误差指标上平均降低了5.4%、22.8%、10.3%,R2精确度指标平均提高了11.6%。说明模型在预测精度方面有显著的改进,并能有效减少误差累积效应。 展开更多
关键词 交通流量预测 图卷积网络 多头注意力机制 门控循环单元 门控融合机制 时空融合
在线阅读 下载PDF
一种用于方面级情感分析的知识增强双图卷积网络 被引量:2
18
作者 万宇杰 陈羽中 《小型微型计算机系统》 CSCD 北大核心 2024年第1期37-44,共8页
近年来,深度神经网络特别是图神经网络在方面级情感分析任务上取得了较大进展,但是仍存在未充分利用外部知识信息、句法依赖树的边关系信息以及知识图谱结构信息的缺陷.针对上述问题,本文提出了一种知识增强的双图卷积网络BGCN-KE(Knowl... 近年来,深度神经网络特别是图神经网络在方面级情感分析任务上取得了较大进展,但是仍存在未充分利用外部知识信息、句法依赖树的边关系信息以及知识图谱结构信息的缺陷.针对上述问题,本文提出了一种知识增强的双图卷积网络BGCN-KE(Knowledge-enhanced Bi-Graph Convolutional Network).首先,提出一种融合句法依赖关系与外部知识的子图构造算法,得到节点间语义关系更紧密的知识子图.其次,提出了双图卷积网络,分别利用两个图卷积网络在句法依赖知识子图中引导评论文本的节点学习邻接节点的外部知识,以及在评论文本的句法依赖图中融合特定方面相关的语义信息,从而增强评论文本的特定方面知识表示和语义表示.再次,BGCN-KE引入边关系注意力机制,更好地捕获特定方面和上下文词语间的语义关系.最后,提出了一种多级特征融合机制,充分融合特定方面相关的外部知识、语义信息和边关系特征.多个公共数据集上的实验证明,BGCN-KE的性能优于最新的对比模型. 展开更多
关键词 图卷积网络 知识图谱 多级特征融合 边关系注意力 方面级情感分析
在线阅读 下载PDF
一种适用于轴承故障诊断半监督学习分类的多层图卷积注意力融合网络 被引量:1
19
作者 魏春虎 程峰 +1 位作者 曾玉海 杨世飞 《机电工程》 CAS 北大核心 2024年第8期1364-1375,共12页
图卷积网络的平滑运行会导致其无法通过深度网络堆叠捕获深层信息,为了解决这个问题,提出了一种适用于滚动轴承故障诊断半监督学习分类的多层图卷积注意力融合网络(MGCAN)。首先,采用频域构图法将数据转换为图模型,捕获了数据的内在结... 图卷积网络的平滑运行会导致其无法通过深度网络堆叠捕获深层信息,为了解决这个问题,提出了一种适用于滚动轴承故障诊断半监督学习分类的多层图卷积注意力融合网络(MGCAN)。首先,采用频域构图法将数据转换为图模型,捕获了数据的内在结构信息,将构建好的图数据输入网络,逐层提取特征信息,从浅层到深层逐步加深对数据特征的理解;然后,对每一层图卷积信息进行了有序拼接,同时引入了图注意力机制,使网络能够自动关注对分类任务比较重要的信息,从而提高了网络的性能和鲁棒性;最终,通过迭代学习,网络能够不断优化模型参数,对故障信息进行了准确识别;对不同工作条件下的滚动轴承进行了多次实验,并将该方法与传统的基于深度学习的方法进行了分析比较。研究结果表明:即使在标记数据只有10%的前提下,采用该网络依旧能够达到88%以上的识别准确度,并且适用于匀速和变速等不同的工况。上述结果证明,在选择适当方法保留多层图卷积中的有用信息后,深度图卷积网络可以成为诊断滚动轴承故障的一大利器。 展开更多
关键词 轴承故障诊断 多层图卷积注意力融合网络 多层图卷积信息 图注意力机制 k-近邻图 深度学习 识别准确度
在线阅读 下载PDF
基于图卷积和双线性注意力网络的药物靶标亲和力预测
20
作者 程竹平 李建华 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期594-601,共8页
药物靶标亲和力预测在药物研发中扮演着重要的角色。针对现有预测方法大多忽略药物分子的二维结构信息、缺乏深层表征融合学习的问题,提出了基于图卷积和双线性注意力网络的药物靶标亲和力预测模型(GBN_DTA)。该模型首先基于多层图卷积... 药物靶标亲和力预测在药物研发中扮演着重要的角色。针对现有预测方法大多忽略药物分子的二维结构信息、缺乏深层表征融合学习的问题,提出了基于图卷积和双线性注意力网络的药物靶标亲和力预测模型(GBN_DTA)。该模型首先基于多层图卷积神经网络编码药物分子图,同时结合1D-CNN和双向长短期记忆网络(BiLSTM)编码靶标序列;然后使用双线性注意力网络融合编码后的药物和靶标特征,最终获得亲和力预测分数。实验结果表明,该模型在DAVIS和KIBA数据集上的性能均优于其他6种主流方法,有效提升了预测准确率。 展开更多
关键词 药物靶标亲和力预测 药物研发 图卷积神经网络 双线性注意力网络 深层表征融合
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部