The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs si...The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.展开更多
The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
Injecting CO_(2)when the gas reservoir of tight sandstone is depleted can achieve the dual purposes of greenhouse gas storage and enhanced gas recovery(CS-EGR).To evaluate the feasibility of CO_(2)injection to enhance...Injecting CO_(2)when the gas reservoir of tight sandstone is depleted can achieve the dual purposes of greenhouse gas storage and enhanced gas recovery(CS-EGR).To evaluate the feasibility of CO_(2)injection to enhance gas recovery and understand the production mechanism,a numerical simulation model of CS-EGR in multi-stage fracturing horizontal wells is established.The behavior of gas production and CO_(2)sequestration is then analyzed through numerical simulation,and the impact of fracture parameters on production performance is examined.Simulation results show that the production rate increases significantly and a large amount of CO_(2)is stored in the reservoir,proving the technical potential.However,hydraulic fractures accelerate CO_(2)breakthrough,resulting in lower gas recovery and lower CO_(2)storage than in gas reservoirs without fracturing.Increasing the length of hydraulic fractures can significantly increase CH4production,but CO_(2)breakthrough will advance.Staggered and spaced perforation of hydraulic fractures in injection wells and production wells changes the fluid flow path,which can delay CO_(2)breakthrough and benefit production efficiency.The fracture network of massive hydraulic fracturing has a positive effect on the CS-EGR.As a result,CH4production,gas recovery,and CO_(2)storage increase with the increase in stimulated reservoir volume.展开更多
For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture ...For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.展开更多
Overburden rock movements and fracture developments occur during mining activities. Consequently, relief gas reservoirs and migration in coal seams being mined as well as in near distant coal seams appear. We consider...Overburden rock movements and fracture developments occur during mining activities. Consequently, relief gas reservoirs and migration in coal seams being mined as well as in near distant coal seams appear. We considered a gas disaster management project and rules on stope relief of gas flows together and explored a gas reservoir and the evolution of stope surrounding rock fractures in the process of mining near distant protective layers by physical simulation, numerical simulation and field testing. Different techniques provide evidence of the rules of interaction of gas reservoirs and the evolution of surrounding rock fractures and are able to find accurately the gas-rich regions around the stope. Finally, we found that these rules can provide a basis for taking measures to prevent gas accidents in the protective layer of the coalface as well as for demonstrating and designing programs to drain high concentrations of gas from the gob.展开更多
CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that a...CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters.展开更多
A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid...A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.展开更多
Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale f...Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale fracture density does not have a straightforward correlation with shale gas productivity. Based on logging data, drilling and seismic data, the relationship between shale fracture and shale gas accumulation is investigated by integrating the results of experiments and geophysical methods. The following conclusions have been drawn:(1) Tracer diffusion tests indicate that zones of fracture act as favorable channels for shale gas migration and high-angle fractures promote gas accumulation.(2) Based on the result of azimuthal anisotropy prediction, a fracture system with anisotropy strength values between 1 and 1.15 represents a moderate development of high-angle fractures, which is considered to be favorable for shale gas accumulation and high productivity, while fracture systems with anisotropy strength values larger than 1.15 indicate over-development of shale fracture, which may result in the destruction of the shale reservoir preservation conditions.展开更多
The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata ...The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.展开更多
The main area of the Jiaoshiba anticline of the Fuling shale gas field was taken as the research object,laboratory rock mechanical experiments and direct shear experiments were conducted to clarify the mechanical anis...The main area of the Jiaoshiba anticline of the Fuling shale gas field was taken as the research object,laboratory rock mechanical experiments and direct shear experiments were conducted to clarify the mechanical anisotropy characteristics and parameters of rock samples with rich beddings.Based on the experimental results,a 3D fracture propagation model of the target reservoir taking mechanical anisotropy,weak bedding plane and vertical stress difference into account was established by the discrete element method to analyze distribution patterns of hydraulic fractures under different bedding densities,mechanical properties,and fracturing engineering parameters(including perforation clusters,injection rates and fracturing fluid viscosity).The research results show that considering the influence of the weak bedding plane and longitudinal stress difference,the interlayer stress difference 3–4 MPa in the study area can control the fracture height within the zone of stress barrier,and the fracture height is less than 40 m.If the influence of the weak bedding plane is not considered,the simulation result of fracture height is obviously higher.Although the opening of high-density bedding fractures increases the complexity of hydraulic fractures,it significantly limited the propagation of fracture height.By reducing the number of clusters,increasing the injection rate,and increasing the volume and proportion of high-viscosity fracturing fluid in the pad stage,the restriction on fracture height due to the bedding plane and vertical stress difference can be reduced,and the longitudinal propagation of fractures can be promoted.The fracture propagation model was used to simulate one stage of Well A in Fuling shale gas field,and the simulation results were consistent with the micro-seismic monitoring results.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,p...Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,primary oil recovery in the Bakken is generally less than 10%of the estimated original oil in place.Gas huff‘n’puff(HnP)has been tested in the Bakken Formation as an enhanced oil recovery(EOR)method;however,most field pilot test results showed no significant incremental oil production.One of the factors affecting HnP EOR performance is premature gas breakthrough,which is one of the most critical issues observed in the field because of the presence of interwell fractures.Consequently,injected gas rapidly reaches adjacent production wells without contacting reservoir rock and increasing oil recovery.Proper conformance control is therefore needed to avoid early gas breakthrough and improve EOR performance.In this study,a rich gas EOR pilot in the Bakken was carefully analyzed to collect the essential reservoir and operational data.A simulation model with 16 wells was then developed to reproduce the production history and predict the EOR performance with and without conformance control.EOR operational strategies,including single-and multiple-well HnP,with different gas injection constraints were investigated.The simulation results of single-well HnP without conformance control showed that a rich gas injection rate of at least 10 MMscfd was needed to yield meaningful incremental oil production.The strategy of conformance control via water injection could significantly improve oil production in the HnP well,but injecting an excessive amount of water also leads to water breakthrough and loss of oil production in the offset wells.By analyzing the production performance of the wells individually,the arrangement of wells was optimized for multiple-well HnP EOR.The multiwell results showed that rich gas EOR could improve oil production up to 7.4%by employing conformance control strategies.Furthermore,replacing rich gas with propane as the injection gas could result in 14%of incremental oil production.展开更多
Low-speed flow experiments in which ultra-fine copper tubes are used to simulate micro-fractures in carbonate strata are conducted to analyze the variations of gas flow state in fractures of different fracture heights...Low-speed flow experiments in which ultra-fine copper tubes are used to simulate micro-fractures in carbonate strata are conducted to analyze the variations of gas flow state in fractures of different fracture heights,determine flow state transition limit and transition interval,and establish the calculation method of flow state transition limit.The results show that the ideal Hagen-Poiseuille flow is the main form of gas flow in large fractures.Due to the decrease of fracture height,the gas flow in the fracture changes from Hagen-Poiseuille flow with ideal smooth seam surface to non-Hagen-Poiseuille flow,and the critical point of the transition is the boundary of flow state transition.After the fracture height continues to decrease to a certain extent below the boundary of the flow state transition fracture height,the form of gas flow gradually changes to the ideal Darcy flow,thus the transition interval of the gas flow state in the closing process of fracture can be determined.Based on the three-dimensional microconvex body scanning of the fracture surface,the material properties of fracture and properties of fluid in the fracture,a method for calculating the boundary of flow state transition is established.The experimental test and theoretical calculation show that the limit of the fracture height for the transition from pipe flow to Darcy flow is about twice the sum of the maximum height of the microconvex bodies on the upper and lower sides of the fracture.展开更多
Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery f...Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery factor.Therefore,the application of EOR in the early reservoir development phase is considered effective for fast-paced and economical tight oil recovery.To achieve these objectives,it is imperative to determine the optimum EOR potential and the best-suited EOR application for every individual tight oil reservoir to maximize its ultimate recovery factor.Since most of the tight oil reservoirs are found in wide spatial source rock with complex and compacted pores and poor geophysical properties yet they hold high saturation of good quality oil and therefore,every single percent increase in oil recovery from such huge reservoirs potentially provide an additional million barrels of oil.Hence,the EOR application in such reservoirs is quite essential.However,the physical understanding of EOR applications in different circumstances from laboratory to field scale is the key to success and similarly,the fundamental physical concepts of fluid flow-dynamics under confinement conditions play an important role.This paper presents a detailed discussion on laboratory-based experimental achievements at micro-scale including fundamental concepts under confinement environment,physics-based numerical studies,and recent actual field piloting experiences based on the U.S.unconventional plays.The objective of this paper is to discuss all the critical reservoir rock and fluid properties and their contribution to reservoir development through massive multi-staged hydraulic fracture networks and the EOR applications.Especially the CO_(2)and produced hydrocarbon gas injection through single well-based huff-n-puff operational constraints are discussed in detail both at micro and macro scale.展开更多
In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is dif...In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field.展开更多
The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based...The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.展开更多
Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical break...Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.展开更多
文摘The gas field in the Bohai Bay Basin is a fractured metamorphic buried-hill reservoir with dual-media characteristics. The retrograde vaporization mechanism observed in this type of gas condensate reservoir differs significantly from that observed in sand gas condensate reservoirs. However, studies on improving the recovery of fractured gas condensate reservoirs are limited;thus, the impact of retrograde vaporization on condensate within fractured metamorphic buried-hill reservoirs remains unclear. To address this gap, a series of gas injection experiments are conducted in pressure-volume-temperature(PVT) cells and long-cores to investigate the retrograde vaporization effect of condensate using different gas injection media in fractured gas condensate reservoirs. We analyze the variation in condensate volume, gas-to-oil ratio, and condensate recovery during gas injection and examine the influence of various gas injection media(CO_(2), N_(2), and dry gas) under different reservoir properties and varying gas injection times. The results demonstrate that the exchange of components between injected gas and condensate significantly influences condensate retrograde vaporization in the formation. Compared with dry gas injection and N_(2) injection,CO_(2) injection exhibits a superior retrograde vaporization effect. At a CO_(2) injection volume of 1 PV, the percentage shrinkage volume of condensate is 13.82%. Additionally, at the maximum retrograde condensation pressure, CO_(2) injection can increase the recovery of condensate by 22.4%. However, the condensate recovery is notably lower in fractured gas condensate reservoirs than in homogeneous reservoirs, owing to the creation of dominant gas channeling by fractures, which leads to decreased condensate recovery. Regarding gas injection timing, the effect of gas injection at reservoir pressure on improving condensate recovery is superior to that of gas injection at the maximum retrograde condensation pressure. This research provides valuable guidance for designing gas injection development plans and dynamic tracking adjustments for fractured gas condensate reservoirs.
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金the financial support of the National Natural Science Foundation of China(Grant No.52304018)China Postdoctoral Science Foundation(Grant No.2023TQ0014,Grant No.2023M730088)。
文摘Injecting CO_(2)when the gas reservoir of tight sandstone is depleted can achieve the dual purposes of greenhouse gas storage and enhanced gas recovery(CS-EGR).To evaluate the feasibility of CO_(2)injection to enhance gas recovery and understand the production mechanism,a numerical simulation model of CS-EGR in multi-stage fracturing horizontal wells is established.The behavior of gas production and CO_(2)sequestration is then analyzed through numerical simulation,and the impact of fracture parameters on production performance is examined.Simulation results show that the production rate increases significantly and a large amount of CO_(2)is stored in the reservoir,proving the technical potential.However,hydraulic fractures accelerate CO_(2)breakthrough,resulting in lower gas recovery and lower CO_(2)storage than in gas reservoirs without fracturing.Increasing the length of hydraulic fractures can significantly increase CH4production,but CO_(2)breakthrough will advance.Staggered and spaced perforation of hydraulic fractures in injection wells and production wells changes the fluid flow path,which can delay CO_(2)breakthrough and benefit production efficiency.The fracture network of massive hydraulic fracturing has a positive effect on the CS-EGR.As a result,CH4production,gas recovery,and CO_(2)storage increase with the increase in stimulated reservoir volume.
基金Supported by the Key Fund Project of the National Natural Science Foundation of China and Joint Fund of Petrochemical Industry(Class A)(U1762212)National Natural Science Foundation of China(52274009)"14th Five-Year"Forward-looking and Fundamental Major Science and Technology Project of CNPC(2021DJ4402)。
文摘For the analysis of the formation damage caused by the compound function of drilling fluid and fracturing fluid,the prediction method for dynamic invasion depth of drilling fluid is developed considering the fracture extension due to shale minerals erosion by oil-based drilling fluid.With the evaluation for the damage of natural and hydraulic fractures caused by mechanical properties weakening of shale fracture surface,fracture closure and rock powder blocking,the formation damage pattern is proposed with consideration of the compound effect of drilling fluid and fracturing fluid.The formation damage mechanism during drilling and completion process in shale reservoir is revealed,and the protection measures are raised.The drilling fluid can deeply invade into the shale formation through natural and induced fractures,erode shale minerals and weaken the mechanical properties of shale during the drilling process.In the process of hydraulic fracturing,the compound effect of drilling fluid and fracturing fluid further weakens the mechanical properties of shale,results in fracture closure and rock powder shedding,and thus induces stress-sensitive damage and solid blocking damage of natural/hydraulic fractures.The damage can yield significant conductivity decrease of fractures,and restrict the high and stable production of shale oil and gas wells.The measures of anti-collapse and anti-blocking to accelerate the drilling of reservoir section,forming chemical membrane to prevent the weakening of the mechanical properties of shale fracture surface,strengthening the plugging of shale fracture and reducing the invasion range of drilling fluid,optimizing fracturing fluid system to protect fracture conductivity are put forward for reservoir protection.
基金Project 2005CB221506 supported by the National Basic Research Program of China
文摘Overburden rock movements and fracture developments occur during mining activities. Consequently, relief gas reservoirs and migration in coal seams being mined as well as in near distant coal seams appear. We considered a gas disaster management project and rules on stope relief of gas flows together and explored a gas reservoir and the evolution of stope surrounding rock fractures in the process of mining near distant protective layers by physical simulation, numerical simulation and field testing. Different techniques provide evidence of the rules of interaction of gas reservoirs and the evolution of surrounding rock fractures and are able to find accurately the gas-rich regions around the stope. Finally, we found that these rules can provide a basis for taking measures to prevent gas accidents in the protective layer of the coalface as well as for demonstrating and designing programs to drain high concentrations of gas from the gob.
基金support from the National Natural Science Foundation of China(No.51904324,No.51974348)the Prospective Basic Major Science and Technology Projects for the 14th Five Year Plan(No.2021DJ2202).
文摘CO_(2) dry fracturing is a promising alternative method to water fracturing in tight gas reservoirs,especially in water-scarce areas such as the Loess Plateau.The CO_(2) flowback efficiency is a critical factor that affects the final gas production effect.However,there have been few studies focusing on the flowback characteristics after CO_(2) dry fracturing.In this study,an extensive core-to-field scale study was conducted to investigate CO_(2) flowback characteristics and CH_(4) production behavior.Firstly,to investigate the impact of core properties and production conditions on CO_(2) flowback,a series of laboratory experiments at the core scale were conducted.Then,the key factors affecting the flowback were analyzed using the grey correlation method based on field data.Finally,taking the construction parameters of Well S60 as an example,a dual-permeability model was used to characterize the different seepage fields in the matrix and fracture for tight gas reservoirs.The production parameters after CO_(2) dry fracturing were then optimized.Experimental results demonstrate that CO_(2) dry fracturing is more effective than slickwater fracturing,with a 9.2%increase in CH_(4) recovery.The increase in core permeability plays a positive role in improving CH_(4) production and CO_(2) flowback.The soaking process is mainly affected by CO_(2) diffusion,and the soaking time should be controlled within 12 h.Increasing the flowback pressure gradient results in a significant increase in both CH_(4) recovery and CO_(2) flowback efficiency.While,an increase in CO_(2) injection is not conducive to CH_(4) production and CO_(2) flowback.Based on the experimental and field data,the important factors affecting flowback and production were comprehensively and effectively discussed.The results show that permeability is the most important factor,followed by porosity and effective thickness.Considering flowback efficiency and the influence of proppant reflux,the injection volume should be the minimum volume that meets the requirements for generating fractures.The soaking time should be short which is 1 day in this study,and the optimal bottom hole flowback pressure should be set at 10 MPa.This study aims to improve the understanding of CO_(2) dry fracturing in tight gas reservoirs and provide valuable insights for optimizing the process parameters.
基金Supported by National Natural Science Foundation of China(52274020,U21B2069,52288101)General Program of the Shandong Natural Science Foundation(ZR2020ME095)National Key Research and Development Program(2021YFC2800803).
文摘A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.
基金supported by the National Key Basic Research Program of China (973 Program, No. 2014CB239104)National Science and Technology Major Project (No. 2017ZX05049002-005)+1 种基金Sinopec Basic Prospect Project (No. G5800-16-ZS-KJB043)NSFC-Sinopec Joint Key Project (No. U1663207)
文摘Shale fractures are an important factor controlling shale gas enrichment and high-productivity zones in the Longmaxi Formation, Jiaoshiba area in eastern Sichuan. Drilling results have, however, shown that the shale fracture density does not have a straightforward correlation with shale gas productivity. Based on logging data, drilling and seismic data, the relationship between shale fracture and shale gas accumulation is investigated by integrating the results of experiments and geophysical methods. The following conclusions have been drawn:(1) Tracer diffusion tests indicate that zones of fracture act as favorable channels for shale gas migration and high-angle fractures promote gas accumulation.(2) Based on the result of azimuthal anisotropy prediction, a fracture system with anisotropy strength values between 1 and 1.15 represents a moderate development of high-angle fractures, which is considered to be favorable for shale gas accumulation and high productivity, while fracture systems with anisotropy strength values larger than 1.15 indicate over-development of shale fracture, which may result in the destruction of the shale reservoir preservation conditions.
基金funded by the Natural Science Foundation of Shandong Province (ZR202103050722)National Natural Science Foundation of China (41174098)。
文摘The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.
基金Supported by the China National Science and Technology Major Project(2016ZX05060001-032)
文摘The main area of the Jiaoshiba anticline of the Fuling shale gas field was taken as the research object,laboratory rock mechanical experiments and direct shear experiments were conducted to clarify the mechanical anisotropy characteristics and parameters of rock samples with rich beddings.Based on the experimental results,a 3D fracture propagation model of the target reservoir taking mechanical anisotropy,weak bedding plane and vertical stress difference into account was established by the discrete element method to analyze distribution patterns of hydraulic fractures under different bedding densities,mechanical properties,and fracturing engineering parameters(including perforation clusters,injection rates and fracturing fluid viscosity).The research results show that considering the influence of the weak bedding plane and longitudinal stress difference,the interlayer stress difference 3–4 MPa in the study area can control the fracture height within the zone of stress barrier,and the fracture height is less than 40 m.If the influence of the weak bedding plane is not considered,the simulation result of fracture height is obviously higher.Although the opening of high-density bedding fractures increases the complexity of hydraulic fractures,it significantly limited the propagation of fracture height.By reducing the number of clusters,increasing the injection rate,and increasing the volume and proportion of high-viscosity fracturing fluid in the pad stage,the restriction on fracture height due to the bedding plane and vertical stress difference can be reduced,and the longitudinal propagation of fractures can be promoted.The fracture propagation model was used to simulate one stage of Well A in Fuling shale gas field,and the simulation results were consistent with the micro-seismic monitoring results.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
基金supported by the U.S.Department of Energy National Energy Technology Laboratory under Award No.DEFE0024233the North Dakota Industrial Commission under the Award Nos.G-04-080(BPOP 2.0)and G-051-98(BPOP 3.0).
文摘Horizontal well drilling and multistage hydraulic fracturing have been demonstrated as effective approaches for stimulating oil production in the Bakken tight oil reservoir.However,after multiple years of production,primary oil recovery in the Bakken is generally less than 10%of the estimated original oil in place.Gas huff‘n’puff(HnP)has been tested in the Bakken Formation as an enhanced oil recovery(EOR)method;however,most field pilot test results showed no significant incremental oil production.One of the factors affecting HnP EOR performance is premature gas breakthrough,which is one of the most critical issues observed in the field because of the presence of interwell fractures.Consequently,injected gas rapidly reaches adjacent production wells without contacting reservoir rock and increasing oil recovery.Proper conformance control is therefore needed to avoid early gas breakthrough and improve EOR performance.In this study,a rich gas EOR pilot in the Bakken was carefully analyzed to collect the essential reservoir and operational data.A simulation model with 16 wells was then developed to reproduce the production history and predict the EOR performance with and without conformance control.EOR operational strategies,including single-and multiple-well HnP,with different gas injection constraints were investigated.The simulation results of single-well HnP without conformance control showed that a rich gas injection rate of at least 10 MMscfd was needed to yield meaningful incremental oil production.The strategy of conformance control via water injection could significantly improve oil production in the HnP well,but injecting an excessive amount of water also leads to water breakthrough and loss of oil production in the offset wells.By analyzing the production performance of the wells individually,the arrangement of wells was optimized for multiple-well HnP EOR.The multiwell results showed that rich gas EOR could improve oil production up to 7.4%by employing conformance control strategies.Furthermore,replacing rich gas with propane as the injection gas could result in 14%of incremental oil production.
基金Supported by the Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(2020CX010401)。
文摘Low-speed flow experiments in which ultra-fine copper tubes are used to simulate micro-fractures in carbonate strata are conducted to analyze the variations of gas flow state in fractures of different fracture heights,determine flow state transition limit and transition interval,and establish the calculation method of flow state transition limit.The results show that the ideal Hagen-Poiseuille flow is the main form of gas flow in large fractures.Due to the decrease of fracture height,the gas flow in the fracture changes from Hagen-Poiseuille flow with ideal smooth seam surface to non-Hagen-Poiseuille flow,and the critical point of the transition is the boundary of flow state transition.After the fracture height continues to decrease to a certain extent below the boundary of the flow state transition fracture height,the form of gas flow gradually changes to the ideal Darcy flow,thus the transition interval of the gas flow state in the closing process of fracture can be determined.Based on the three-dimensional microconvex body scanning of the fracture surface,the material properties of fracture and properties of fluid in the fracture,a method for calculating the boundary of flow state transition is established.The experimental test and theoretical calculation show that the limit of the fracture height for the transition from pipe flow to Darcy flow is about twice the sum of the maximum height of the microconvex bodies on the upper and lower sides of the fracture.
文摘Tight oil reservoirs are contributing a major role to fulfill the overall crude oil needs,especially in the US.However,the dilemma is their ultra-tight permeability and an uneconomically short-lived primary recovery factor.Therefore,the application of EOR in the early reservoir development phase is considered effective for fast-paced and economical tight oil recovery.To achieve these objectives,it is imperative to determine the optimum EOR potential and the best-suited EOR application for every individual tight oil reservoir to maximize its ultimate recovery factor.Since most of the tight oil reservoirs are found in wide spatial source rock with complex and compacted pores and poor geophysical properties yet they hold high saturation of good quality oil and therefore,every single percent increase in oil recovery from such huge reservoirs potentially provide an additional million barrels of oil.Hence,the EOR application in such reservoirs is quite essential.However,the physical understanding of EOR applications in different circumstances from laboratory to field scale is the key to success and similarly,the fundamental physical concepts of fluid flow-dynamics under confinement conditions play an important role.This paper presents a detailed discussion on laboratory-based experimental achievements at micro-scale including fundamental concepts under confinement environment,physics-based numerical studies,and recent actual field piloting experiences based on the U.S.unconventional plays.The objective of this paper is to discuss all the critical reservoir rock and fluid properties and their contribution to reservoir development through massive multi-staged hydraulic fracture networks and the EOR applications.Especially the CO_(2)and produced hydrocarbon gas injection through single well-based huff-n-puff operational constraints are discussed in detail both at micro and macro scale.
基金Supported by the Sinopec Science and Technology Project(P22183).
文摘In the Jiaoshiba block of the Fuling shale gas field,the employed reserves and recovery factor by primary well pattern are low,no obvious barrier is found in the development layer series,and layered development is difficult.Based on the understanding of the main factors controlling shale gas enrichment and high production,the theory and technology of shale gas three-dimensional development,such as fine description and modeling of shale gas reservoir,optimization of three-dimensional development strategy,highly efficient drilling with dense well pattern,precision fracturing and real-time control,are discussed.Three-dimensional development refers to the application of optimal and fast drilling and volume fracturing technologies,depending upon the sedimentary characteristics,reservoir characteristics and sweet spot distribution of shale gas,to form"artificial gas reservoir"in a multidimensional space,so as to maximize the employed reserves,recovery factor and yield rate of shale gas development.In the research on shale gas three-dimensional development,the geological+engineering sweet spot description is fundamental,the collaborative optimization of natural fractures and artificial fractures is critical,and the improvement of speed and efficiency in drilling and fracturing engineering is the guarantee.Through the implementation of three-dimensional development,the overall recovery factor in the Jiaoshiba block has increased from 12.6%to 23.3%,providing an important support for the continuous and stable production of the Fuling shale gas field.
文摘The development theories of low-permeability oil and gas reservoirs are refined, the key development technologies are summarized, and the prospect and technical direction of sustainable development are discussed based on the understanding and research on developed low-permeability oil and gas resources in China. The main achievements include:(1) the theories of low-permeability reservoir seepage, dual-medium seepage, relative homogeneity, etc.(2) the well location optimization technology combining favorable area of reservoir with gas-bearing prediction and combining pre-stack with post-stack;(3) oriented perforating multi-fracture, multistage sand adding, multistage temporary plugging, vertical well multilayer, horizontal and other fracturing techniques to improve productivity of single well;(4) the technology of increasing injection and keeping pressure, such as overall decreasing pressure, local pressurization, shaped charge stamping and plugging removal, fine separate injection, mild advanced water injection and so on;(5) enhanced recovery technology of optimization of injection-production well network in horizontal wells. To continue to develop low-permeability reserves economically and effectively, there are three aspects of work to be done well:(1) depending on technical improvement, continue to innovate new technologies and methods, establish a new mode of low quality reservoir development economically, determine the main technical boundaries and form replacement technology reserves of advanced development;(2) adhering to the management system of low cost technology & low cost, set up a complete set of low-cost dual integration innovation system through continuous innovation in technology and management;(3) striving for national preferential policies.
基金Supported by the China National Science and Technology Major Project(2016ZX05014)
文摘Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950 s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being:(1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium;(2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method;(3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow;(4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core;(5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done:(1) complex reservoir description technology with higher accuracy;(2) various enhanced oil recovery techniques;(3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost;(4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.