期刊文献+
共找到876篇文章
< 1 2 44 >
每页显示 20 50 100
An infrared target intrusion detection method based on feature fusion and enhancement 被引量:12
1
作者 Xiaodong Hu Xinqing Wang +3 位作者 Xin Yang Dong Wang Peng Zhang Yi Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期737-746,共10页
Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infr... Infrared target intrusion detection has significant applications in the fields of military defence and intelligent warning.In view of the characteristics of intrusion targets as well as inspection difficulties,an infrared target intrusion detection algorithm based on feature fusion and enhancement was proposed.This algorithm combines static target mode analysis and dynamic multi-frame correlation detection to extract infrared target features at different levels.Among them,LBP texture analysis can be used to effectively identify the posterior feature patterns which have been contained in the target library,while motion frame difference method can detect the moving regions of the image,improve the integrity of target regions such as camouflage,sheltering and deformation.In order to integrate the advantages of the two methods,the enhanced convolutional neural network was designed and the feature images obtained by the two methods were fused and enhanced.The enhancement module of the network strengthened and screened the targets,and realized the background suppression of infrared images.Based on the experiments,the effect of the proposed method and the comparison method on the background suppression and detection performance was evaluated,and the results showed that the SCRG and BSF values of the method in this paper had a better performance in multiple data sets,and it’s detection performance was far better than the comparison algorithm.The experiment results indicated that,compared with traditional infrared target detection methods,the proposed method could detect the infrared invasion target more accurately,and suppress the background noise more effectively. 展开更多
关键词 Target intrusion detection convolutional neural network feature fusion Infrared target
在线阅读 下载PDF
基于ASFF-AAKR和CNN-BILSTM滚动轴承寿命预测 被引量:1
2
作者 张永超 刘嵩寿 +2 位作者 陈昱锡 杨海昆 陈庆光 《科学技术与工程》 北大核心 2025年第2期567-573,共7页
针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural net... 针对滚动轴承寿命预测精度低,构建健康指标困难的问题。提出了一种基于自适应特征融合(adaptively spatial feature fusion,ASFF)和自联想核回归模型(auto associative kernel regression,AAKR)与卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long-short term memory,BILSTM)的轴承剩余寿命预测模型。首先,在时域、频域和时频域提取多维特征,利用单调性和趋势性筛选敏感特征;其次利用ASFF-AAKR对敏感特征进行特征融合构建健康指标;最后,将健康指标输入到CNN和BILSTM中,实现对滚动轴承的寿命预测。结果表明:所构建的寿命预测模型优于其他模型,该方法具有更低的误差、寿命预测精度更高。 展开更多
关键词 滚动轴承 自适应特征融合 自联想核回归 卷积神经网络 双向长短期记忆网络 剩余寿命预测
在线阅读 下载PDF
基于多尺度卷积自编码器的船舶逆变器故障诊断 被引量:1
3
作者 崔博文 张思远 《舰船科学技术》 北大核心 2025年第3期135-140,共6页
为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断... 为实现对船舶逆变器的有效维护,确保船舶逆变器模块的正常运行,提出一种基于多尺度特征融合和降噪卷积自编码器的船舶逆变器开路故障诊断方法。可以直接对一维原始电流数据自适应地提取数据特征,降低信号内的噪声,实现端到端的故障诊断。首先,利用数据增强方法来增强数据集;其次,根据数据特点设计可以提取局部细节和整体结构信息的多尺度卷积特征融合模块,并在编码器中引入该模块,形成特征提取模型;最后,利用全连接神经网络对模型输出的数据特征进行分类,根据分类结果实现故障诊断。实验结果表明,所提出的方法具有优越的数据特征提取性能及噪声鲁棒性能,可以实现船舶逆变器开关器件开路故障诊断。 展开更多
关键词 船舶逆变器 故障诊断 多尺度特征融合 卷积自编码器
在线阅读 下载PDF
动静图融合和时序流注意力网络用于交通流预测
4
作者 闫敬 王祥 郑铮 《兵工自动化》 北大核心 2025年第5期66-70,共5页
为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correla... 为准确预测交通流量有利于优化交通管理、提高交通效率的问题,提出一种新的动静态图融合和时序流注意力网络。通过图卷积网络捕捉动态和静态的空间相关性,引入流注意力机制,有效缓解二次复杂度问题;设计时间相关性建模(temporal correlation modeling,TCM)模块替换流注意力机制的线性变换方法,以增强模型的时序建模能力。在4个真实世界的交通数据集上进行了大量实验。实验结果表明:所提出的模型具有优越的性能,并且明显优于基线。 展开更多
关键词 交通流预测 时空相关性 流注意力机制 图卷积网络 特征融合
在线阅读 下载PDF
基于立体感感知的全景图像质量评价算法
5
作者 安平 汤旭锋 +1 位作者 杨超 黄新彭 《信号处理》 北大核心 2025年第4期759-769,共11页
无参考全景图像质量评价旨在客观衡量全景图像的人类视觉感知质量,而无需依赖原始图像的质量信息。随着虚拟现实技术的迅猛发展,全景图像质量评价的重要性日益凸显。然而,现有全景图像质量评价算法仍存在着一些限制,如不能很好模拟观察... 无参考全景图像质量评价旨在客观衡量全景图像的人类视觉感知质量,而无需依赖原始图像的质量信息。随着虚拟现实技术的迅猛发展,全景图像质量评价的重要性日益凸显。然而,现有全景图像质量评价算法仍存在着一些限制,如不能很好模拟观察者的浏览过程、未能有效考虑观看者的立体感知过程等。这严重影响了全景图像质量评价的准确性。为解决这一问题,本文提出一种基于沉浸式立体感知和视口感知交互的无参考全景图像质量评价算法。首先,设计一种视口提取策略,通过在球形域上提取特征视点,选择具有较高被观察概率的视点。对选定的视点提取相应的视口内容,并将多个视口内容并行输入特征编码器,以实现多尺度视口特征的提取。随后,鉴于当前实现多个视口间信息交互的方式尚存在局限性,本文提出一个视口特征交互模块,旨在实现对输入的多个视口内容进行跨视口的信息交互。最后,本文还探索了在缺乏视口采样的情况下,利用整个全景图像实现对立体感信息的获取,以实现对立体感过程建模从而提高整体评价性能。实验结果证明了本文提出算法的有效性,与当前最先进的质量评价算法相比之下,斯皮尔曼等级相关系数(Spearman Rank Order Correlation Coefficient,SROCC)指标和皮尔逊线性相关系数(Linear Pearson Correlation Coefficient,PLCC)在公开数据集CVIQD上分别达到0.72%和0.70%的提升,而在数据集OIQA上分别达到了1.10%和0.54%的提升。 展开更多
关键词 全景图像质量评价 视口提取 球面卷积 特征融合
在线阅读 下载PDF
融合多源信息及图像特征泛化的空气质量检测
6
作者 王晓婷 崔雅博 刘丽娜 《电子测量技术》 北大核心 2025年第13期166-173,共8页
针对空气PM_(2.5)浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气... 针对空气PM_(2.5)浓度检测过度依赖专业设备的问题,提出了一种融合多源信息及图像特征泛化的空气质量检测算法。首先采用EfficientNet-B0作为主干网络对输入的大气可见光图像进行特征编码,将温度、湿度、风速、气压和光照强度等多源气象信息映射为与大气图像对应的特征向量,并与大气图像特征进行拼接融合;然后利用全连接层将全局特征输出为标量,并利用损失函数检测出空气的PM_(2.5)浓度;最后在网络模型训练阶段,通过对大气图像不同尺度的特征进行随机泛化增强来丰富样本分布空间,使网络能够在有限的数据样本中学习到更多特征,从而有效改善了检测网络的性能。实验结果表明:设计的检测方法与几种主流的方法相比具有更高的检测精度和稳定性,在测试集上得到的RMSE和R-squared分别为21.55μg/m^(3)和0.923,通过对8个场景检测,得到结果的平均误差仅为5.2%,最大误差也仅为7.6%,能够适应各类极端大气污染环境的空气质量检测任务。 展开更多
关键词 空气质量 PM_(2.5)检测 卷积神经网络 多源信息 特征泛化增强 特征融合
在线阅读 下载PDF
基于AF-BiTCN的弹道中段目标HRRP识别
7
作者 王晓丹 王鹏 +2 位作者 宋亚飞 向前 李京泰 《北京航空航天大学学报》 北大核心 2025年第2期349-359,共11页
针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为... 针对弹道中段目标高分辨距离像(HRRP)的时序特征提取和识别问题,为充分利用弹道中段目标HRRP的双向时序信息,进一步提高识别性能,提出一种基于加性融合双向时间卷积神经网络(AF-BiTCN)的识别方法。对HRRP数据采用双向时序滑窗法处理为双向序列;构建BiTCN逐层提取HRRP的双向深层时序特征,并将双向时序特征采用加性策略融合;利用更加稳健的融合特征实现对弹道中段目标的识别,并使用Adam算法优化AF-BiTCN的收敛速度和稳定性。实验结果表明:所提的基于AF-BiTCN的弹道中段目标HRRP识别方法较堆叠选择长短期记忆网络(SLSTM)、堆叠门控循环单元(SGRU)等6种时序方法具有更高的准确率和更快的识别速度,在测试集上达到了96.60%的准确率,并且在噪声数据集上表现出更好的鲁棒性。 展开更多
关键词 双向时间卷积神经网络 弹道目标识别 特征融合 高分辨距离像 滑窗算法
在线阅读 下载PDF
基于多特征融合的外来入侵植物细粒度命名实体识别
8
作者 尚俊平 程春畅 +3 位作者 卢洋 席磊 程金鹏 刘合兵 《农业工程学报》 北大核心 2025年第12期230-239,共10页
外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模... 外来入侵植物命名实体识别是进一步挖掘入侵植物信息的关键步骤。为解决外来入侵植物领域命名实体识别存在训练数据稀缺、字符级向量表征单一、专业实体识别精度不足等问题,构建了一种基于多特征融合的外来入侵植物细粒度命名实体识别模型(invasive alien plant fine-grained named entity recognition model based on multi-feature fusion,IAPMFF)。首先,采用RoBERTa(Robustly optimized BERT approach,RoBERTa)预训练模型为基础架构,通过构建领域专用词典并通过词汇特征向量融合,增强模型对低频词及专业术语的表征能力;其次,设计双通道特征提取层,利用双向长短时记忆网络(Bi-directional long-short term memory,BiLSTM)提取长序列语义特征,结合卷积残差结构(convolution residual structure,CRS)捕获更多细粒度特征;然后,设计分层特征融合机制,通过多头自注意力机制加权融合两种特征向量,构建多维度语义表征;最后,采用条件随机场(conditional random field,CRF)进行序列解码优化。基于专家知识,构建包含24类细粒度实体标签的外来入侵植物命名实体识别数据集。试验表明,IAP-MFF模型在外来入侵植物命名实体识别数据集上取得91.51%精确率、92.51%召回率和92.01%的F1值,较基线模型分别提升4.40、3.39、3.91个百分点,显著改善了小样本细粒度实体的识别效果。在Weibo、Resume公共数据集上F1值分别达到72.75%和97.15%,表明了模型的泛化性和优越性能。IAP-MFF模型通过融合包含领域知识在内的多种特征,有效提升实体识别精度与泛化能力,为外来入侵植物知识图谱构建奠定技术基础。 展开更多
关键词 命名实体识别 多特征融合 卷积残差结构 多头自注意力机制 外来入侵植物
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
9
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
融合关键区域信息的双流网络视频表情识别
10
作者 孔英会 崔文婷 +1 位作者 张珂 车辚辚 《智能系统学报》 北大核心 2025年第3期658-669,共12页
人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息... 人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息的双流网络表情识别方法。构建空间-时间双流网络,其中空间网络分支结合面部运动单元和CSFA(channel-spatial frame attention),重点关注影响表情识别结果的面部关键区域,以实现空间特征的有效提取;时间分支通过Farneback提取光流获得帧间的表情运动信息,并借助空间关键区域掩模选取降低光流计算复杂度。对空间-时间双流网络识别结果进行决策融合,得到最终视频表情识别结果。该方法在eNTERFACE'05、CK+数据集上进行实验测试,结果表明本文所提方法可有效提升识别精度,且提高了运行效率。 展开更多
关键词 视频表情识别 双流网络 注意力机制 光流 卷积神经网络 掩模 特征融合 面部表情识别
在线阅读 下载PDF
一种基于YOLOv8网络架构的机场飞鸟检测方法
11
作者 孔建国 张向伟 +1 位作者 赵志伟 梁海军 《电讯技术》 北大核心 2025年第4期495-502,共8页
为克服机场飞鸟检测中人工观测准确率低、速度慢、雷达探测造价高的缺点,保障民航安全运行,采用深度学习目标检测算法实现对机场附近飞鸟的精确感知。为提高YOLOv8对重要特征的关注度,在颈部添加高效通道注意力(Efficient Channel Atten... 为克服机场飞鸟检测中人工观测准确率低、速度慢、雷达探测造价高的缺点,保障民航安全运行,采用深度学习目标检测算法实现对机场附近飞鸟的精确感知。为提高YOLOv8对重要特征的关注度,在颈部添加高效通道注意力(Efficient Channel Attention,ECA),使网络在增加少量参数的情况下获得较明显的精度提升。提出多分支C3(Multi-branch C3,MBC3)模块,通过引入具有不同感受野的卷积分支结构以增强模块的表达能力。探究了不同网络宽度及深度对模型性能的影响并为模型选择合适的宽度与深度因子。为减少小飞鸟特征丢失问题,提出了浅层特征-路径聚合网络(Shallow Feature-Path Aggregation Network,SF-PAN)。在机场飞鸟数据集上测试,结果表明,改进YOLOv8的mAP@50达到82.9%,相比原YOLOv8提升了2.4%;其速度达到31 frame/s。改进YOLOv8满足机场飞鸟检测实时性和精确性的要求,为复杂环境下机场鸟类检测提供了一种新思路。 展开更多
关键词 机场飞鸟检测 鸟击防范 注意力机制 多分支卷积 特征融合
在线阅读 下载PDF
基于形状流和多尺度特征融合的腺体分割
12
作者 林嘉雯 陈苏苏 +2 位作者 林智明 李笠 翁谦 《中国生物医学工程学报》 北大核心 2025年第1期52-65,共14页
睑板腺成像技术广泛应用于干眼症的分型诊断、管理与个性化治疗中,但仅靠眼科医生进行直接观察和定性评估,评价主观且可重复性低。为提高眼科医生的诊断效率,研究者们提出了一系列基于U-Net的红外睑板腺图像腺体分割方法,但在图像边缘... 睑板腺成像技术广泛应用于干眼症的分型诊断、管理与个性化治疗中,但仅靠眼科医生进行直接观察和定性评估,评价主观且可重复性低。为提高眼科医生的诊断效率,研究者们提出了一系列基于U-Net的红外睑板腺图像腺体分割方法,但在图像边缘、出现反光点以及腺体密集区域,分割结果仍不理想。考虑到红外睑板腺图像成像与腺体分布的特点,提出基于形状流和多尺度特征融合的腺体分割模型SS-UNet,引入空洞卷积模块以增强模型的特征提取能力,设计形状流辅助分支以充分学习腺体的形状信息,采用多尺度特征融合模块以获得粗细各异腺体的特征表示。为验证模型的有效性,使用由福州大学附属省立医院眼科收集的包含203幅红外睑板腺图像的全标注数据集在同等实验环境下与其他先进分割模型开展对比实验,并进行模块消融分析,同时展示了可视化结果。实验表明,SS-UNet的Acc、Dice、IoU等指标分别达到了94.62%、80.94%和68.17%,相较于基准网络U-Net分别提升了0.36%、1.41%和1.95%。研究表明,SS-UNet能够充分运用腺体的形状与尺度等信息,解决腺体粘连、漏检等错误分割问题,有效提高分割精度,为辅助临床诊断提供客观依据。 展开更多
关键词 睑板腺功能障碍 腺体分割 空洞卷积 形状流 多尺度特征融合
在线阅读 下载PDF
卷积自编码器和残差循环神经网络在刀具剩余寿命预测中的应用
13
作者 周学良 潘晓明 吴瑶 《机械科学与技术》 北大核心 2025年第5期806-813,共8页
针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化... 针对刀具剩余寿命预测问题,提出了一种将一维卷积自编码器(One-dimensional convolutional auto encoder,1DCAE)和残差双向门控循环单元(Residual bidirectional gated recurrent unit,RBGRU)相结合的预测方法。通过1DCAE连续卷积池化和反卷积上采样方法获取工况信号的深层特征,并将其与分段后的原始信号融合后作为刀具剩余寿命的表征;同时结合残差网络的思想对双向门控循环单元(Bidirectional gated recurrent unit,BiGRU)的结构进行改进以增强对时序特征的捕获能力。实验结果表明,该方法比其他算法具有更高的预测精度。 展开更多
关键词 刀具 剩余寿命预测 卷积自编码器 残差门控循环单元 特征融合
在线阅读 下载PDF
基于多尺度特征融合与重构卷积的肝肿瘤图像分割方法
14
作者 马金林 酒志青 +4 位作者 马自萍 夏明格 张凯 程叶霞 马瑞士 《华南理工大学学报(自然科学版)》 北大核心 2025年第5期94-108,共15页
针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核... 针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核重构模块,使编码器保留更多的细节信息,并使解码器能更有效地恢复信息,以提升肝肿瘤图像特征的表达能力。然后,为丰富全局上下文信息的传递,设计了三分支空间金字塔池化模块来优化瓶颈结构的信息传递,打破单一路径的限制。接着,设计了多尺度特征融合模块来优化编码器信息的复用机制,增强模型对全局上下文信息的建模能力,并提升其在提取不同尺度肝肿瘤图像特征时的效能。最后,在LiTS2017和3DIRCADb数据集上对该文方法的性能进行了测试。实验结果表明:在LiTS2017数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.56%和95.25%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.71%和81.58%;在3DIRCADb数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.63%和95.39%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.62%和81.63%。 展开更多
关键词 肝肿瘤图像分割 卷积核重构 空间金字塔池化 多尺度特征融合
在线阅读 下载PDF
自适应卷积注意力与掩码结构协同的显著目标检测
15
作者 朱磊 袁金垚 +1 位作者 王文武 蔡小嫚 《电子与信息学报》 北大核心 2025年第1期260-270,共11页
显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点... 显著目标检测(SOD)旨在模仿人类视觉系统注意力机制和认知机制来自动提取场景中的显著物体。虽然现有基于卷积神经网络(CNN)或Transformer的模型不断刷新该领域方法的性能,但较少研究关注以下两个问题:(1)此领域多数方法常采用逐像素点的密集预测方式以获取像素显著值,然而该方式不符合基于人类视觉系统的场景解析机制,即人眼通常对语义区域进行整体分析而非关注像素级信息;(2)增强上下文信息关联在SOD任务中受到广泛关注,但通过Transformer主干结构获取长程关联特征不一定具有优势。SOD应更关注目标在适当区域内其中心-邻域差异性而非全局长程依赖。针对上述问题,该文提出一种新的显著目标检测模型,将CNN形式的自适应注意力和掩码注意力集成到网络中,以提高显著目标检测的性能。该算法设计了基于掩码感知的解码模块,通过将交叉注意力限制在预测的掩码区域来感知图像特征,有助于网络更好地聚焦于显著目标的整体区域。同时,该文设计了基于卷积注意力的上下文特征增强模块,与Transformer逐层建立长程关系不同,该模块仅捕获最高层特征中的适当上下文关联,避免引入无关的全局信息。该文在4个广泛使用的数据集上进行了实验评估,结果表明,该文提出的方法在不同场景下均取得了显著的性能提升,具有良好的泛化能力和稳定性。 展开更多
关键词 显著目标检测 卷积神经网络形式的自适应注意力 掩码注意力 特征增强
在线阅读 下载PDF
基于图卷积特征提取的低重叠率点云配准方法
16
作者 张元 阎雨梦 +2 位作者 张乐 庞敏 韩慧妍 《激光与红外》 北大核心 2025年第6期969-977,共9页
在低重叠率点云配准中,传统方法因特征稀疏且难以匹配,在大位姿误差或复杂变换场景下容易陷入局部最优,影响配准精度。为解决这些问题,本文提出了一种渐进特征融合金字塔网络的自适应图卷积模型,通过从粗到细寻找点云之间的对应关系。... 在低重叠率点云配准中,传统方法因特征稀疏且难以匹配,在大位姿误差或复杂变换场景下容易陷入局部最优,影响配准精度。为解决这些问题,本文提出了一种渐进特征融合金字塔网络的自适应图卷积模型,通过从粗到细寻找点云之间的对应关系。首先利用自适应图卷积(AGConv)提取和编码空间特征,然后使用渐进特征金字塔网络(AFPN)跨多个尺度融合语义信息,共同提高模型在复杂三维场景理解与分析任务上的性能;其次引入几何Transformer增强模型对全局结构和关联性的理解能力,并实现高质量超点匹配;最后结合AGConv和AFPN设计了一种局部到全局的配准方法,利用骨干学习到的局部点特征并通过叠加点匹配解决全局歧义问题,提高算法鲁棒性。实验证明该网络显著提升了低重叠率点云的配准精度。 展开更多
关键词 低重叠率 三维点云 点云配准 自适应图卷积 多尺度特征融合
在线阅读 下载PDF
基于相邻特征融合与特征解耦的一阶段目标检测
17
作者 郑剑 贺朝辉 于祥春 《北京航空航天大学学报》 北大核心 2025年第4期1205-1214,共10页
针对目标检测中特征金字塔网络(FPN)造成的大尺度目标检测精度下降及目标检测2个子任务所需语义特征不一致问题,提出一种基于相邻特征融合(AFF)与特征解耦的网络(AFFDN)模型。该模型中的AFF模块通过多对一连接引入更短的梯度回传路径,... 针对目标检测中特征金字塔网络(FPN)造成的大尺度目标检测精度下降及目标检测2个子任务所需语义特征不一致问题,提出一种基于相邻特征融合(AFF)与特征解耦的网络(AFFDN)模型。该模型中的AFF模块通过多对一连接引入更短的梯度回传路径,缓解了大尺度目标梯度消失的问题;AFF模块通过共享参数和偏移量,有效减小了模型参数量,并增强了多尺度特征语义一致性;相比于基于神经架构搜索的FPN(NAS-FPN),AFF参数量更小、性能增益更显著。AFFDN模型中的特征解耦模块(FDM)通过动态感受野和全局注意力,在感受野-通道-空间3个维度上进行细粒度特征解耦,为不同分支生成特有的任务相关特征,进而提高目标检测精度。将AFFDN模型应用到不同的一阶段目标检测模型时,在PASCAL VOC和MS COCO2017数据集上与基线模型相比,检测精度分别提升了至少0.9%和2.3%。 展开更多
关键词 目标检测 多尺度特征融合 特征解耦 注意力 可变形卷积
在线阅读 下载PDF
融合多尺度特征的高效网片缺陷检测算法
18
作者 何钢 姚远 +2 位作者 韩征彤 邹华涛 王田田 《计算机工程与应用》 北大核心 2025年第11期316-324,共9页
针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域... 针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域的平滑融合,增加了小样本缺陷数量的同时解决了缺陷数量分布不均匀的问题。在YOLOv8中融入轻量多维卷积改进的C2fLWDC(C2flightweight multi-dimensional convolution)模块及加权多特征增强模块,既增强了网络对缺陷特征的提取又实现了各级特征的高效融合,提升了对多尺度缺陷样本的表征能力。采用EIOU(efficient intersection over union)定位损失函数,加速了对缺陷目标的准确定位。网片数据集检测结果表明,改进后的算法mAP(mean average precision)达到92%,相较于原始模型提升了16.8个百分点,能很好地完成缺陷目标的检测任务。 展开更多
关键词 网片缺陷 YOLOv8 轻量多维卷积 特征融合 多尺度
在线阅读 下载PDF
结合注意力特征融合的路面裂缝检测
19
作者 谢永华 厉涛 柏勇 《计算机工程与设计》 北大核心 2025年第1期307-313,共7页
为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重... 为解决路面裂缝检测中裂缝漏检和定位不准的问题,提出一个结合注意力特征融合的可端到端训练的路面裂缝检测网络。基于Resnet-50结构设计,在特征融合部分添加注意力特征融合模块,通过注意力掩码学习,动态调整浅层特征与深层特征融合权重,突出有用信息,解决裂缝漏检问题;在编码器部分,改进浅层特征与深层特征的选取方式,提升特征融合效果和检测精度。实验结果表明,该网络在各项指标上均优于其它对比网络,具有较高的检测精度。 展开更多
关键词 裂缝检测 深度学习 语义分割 卷积网络 注意力机制 特征融合 特征提取
在线阅读 下载PDF
基于增强特征融合的轻量级人体姿态估计网络
20
作者 施昕昕 张昊亮 《电子测量技术》 北大核心 2025年第2期189-198,共10页
为了提高轻量化人体姿态估计网络对不同阶段特征图的信息提取和特征融合能力和关键点热力图与分类特征图的后处理能力,提出了一种基于多阶段多层级特征融合的人体姿态估计网络。首先设计了多层级特征融合模块,以提高神经网络模型对特征... 为了提高轻量化人体姿态估计网络对不同阶段特征图的信息提取和特征融合能力和关键点热力图与分类特征图的后处理能力,提出了一种基于多阶段多层级特征融合的人体姿态估计网络。首先设计了多层级特征融合模块,以提高神经网络模型对特征图的信息提取和归纳总结能力;接着设计了结合特征融合模块设计了特征融合分支,以达到保留模型不同阶段的信息不会随长期卷积运算而丢失的效果;最后对模型输出的关键点分类图进行后处理操作,对分类部分使用分类损失增强模块进行进一步增强,使其能够更好地专注于关键点分类任务,以提高模型输出的准确性。在CrowdPose数据集进行性能测试,本文算法和LitePose算法在XS结构下的AP值分别为50.7%和48.4%;在S结构下,AP值分别为59.1%和58.3%。在MS COCO val2017数据集进行性能测试,本文算法和LitePose算法在XS结构下的AP值分别为41.9%和40.6%;在S结构下,AP值分别为57.0%和56.8%。实验结果表明,本文算法提出的多层级特征融合模块和高分辨率融合分支以及后处理操作对人体姿态估计网络检测性能提升具有正向作用。 展开更多
关键词 人体姿态估计 轻量级网络 多尺度特征融合 深度可分离卷积
在线阅读 下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部