期刊文献+
共找到33,451篇文章
< 1 2 250 >
每页显示 20 50 100
Hyperspectral Image Super-Resolution Based on Spatial-Spectral-Frequency Multidimensional Features
1
作者 Sifan Zheng Tao Zhang +3 位作者 Haibing Yin Hao Hu Jian Jiang Chenggang Yan 《Journal of Beijing Institute of Technology》 2025年第1期28-41,共14页
Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vi... Due to the limitations of existing imaging hardware, obtaining high-resolution hyperspectral images is challenging. Hyperspectral image super-resolution(HSI SR) has been a very attractive research topic in computer vision, attracting the attention of many researchers. However, most HSI SR methods focus on the tradeoff between spatial resolution and spectral information, and cannot guarantee the efficient extraction of image information. In this paper, a multidimensional features network(MFNet) for HSI SR is proposed, which simultaneously learns and fuses the spatial,spectral, and frequency multidimensional features of HSI. Spatial features contain rich local details,spectral features contain the information and correlation between spectral bands, and frequency feature can reflect the global information of the image and can be used to obtain the global context of HSI. The fusion of the three features can better guide image super-resolution, to obtain higher-quality high-resolution hyperspectral images. In MFNet, we use the frequency feature extraction module(FFEM) to extract the frequency feature. On this basis, a multidimensional features extraction module(MFEM) is designed to learn and fuse multidimensional features. In addition, experimental results on two public datasets demonstrate that MFNet achieves state-of-the-art performance. 展开更多
关键词 deep neural network hyperspectral image spatial feature spectral information frequency feature
在线阅读 下载PDF
Efficient Reconstruction of Spatial Features for Remote Sensing Image-Text Retrieval
2
作者 ZHANG Weihang CHEN Jialiang +3 位作者 ZHANG Wenkai LI Xinming GAO Xin SUN Xian 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第1期101-111,共11页
Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasi... Remote sensing cross-modal image-text retrieval(RSCIR)can flexibly and subjectively retrieve remote sensing images utilizing query text,which has received more researchers’attention recently.However,with the increasing volume of visual-language pre-training model parameters,direct transfer learning consumes a substantial amount of computational and storage resources.Moreover,recently proposed parameter-efficient transfer learning methods mainly focus on the reconstruction of channel features,ignoring the spatial features which are vital for modeling key entity relationships.To address these issues,we design an efficient transfer learning framework for RSCIR,which is based on spatial feature efficient reconstruction(SPER).A concise and efficient spatial adapter is introduced to enhance the extraction of spatial relationships.The spatial adapter is able to spatially reconstruct the features in the backbone with few parameters while incorporating the prior information from the channel dimension.We conduct quantitative and qualitative experiments on two different commonly used RSCIR datasets.Compared with traditional methods,our approach achieves an improvement of 3%-11% in sumR metric.Compared with methods finetuning all parameters,our proposed method only trains less than 1% of the parameters,while maintaining an overall performance of about 96%. 展开更多
关键词 remote sensing cross-modal image-text retrieval(RSCIR) spatial features channel features contrastive learning parameter effective transfer learning
在线阅读 下载PDF
Artificial intelligence-driven radiomics study in cancer:the role of feature engineering and modeling 被引量:1
3
作者 Yuan-Peng Zhang Xin-Yun Zhang +11 位作者 Yu-Ting Cheng Bing Li Xin-Zhi Teng Jiang Zhang Saikit Lam Ta Zhou Zong-Rui Ma Jia-Bao Sheng Victor CWTam Shara WYLee Hong Ge Jing Cai 《Military Medical Research》 SCIE CAS CSCD 2024年第1期115-147,共33页
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of... Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research. 展开更多
关键词 Artificial intelligence Radiomics feature extraction feature selection Modeling INTERPRETABILITY Multimodalities Head and neck cancer
在线阅读 下载PDF
Video-Based Deception Detection with Non-Contact Heart Rate Monitoring and Multi-Modal Feature Selection
4
作者 Yanfeng Li Jincheng Bian +1 位作者 Yiqun Gao Rencheng Song 《Journal of Beijing Institute of Technology》 EI CAS 2024年第3期175-185,共11页
Deception detection plays a crucial role in criminal investigation.Videos contain a wealth of information regarding apparent and physiological changes in individuals,and thus can serve as an effective means of decepti... Deception detection plays a crucial role in criminal investigation.Videos contain a wealth of information regarding apparent and physiological changes in individuals,and thus can serve as an effective means of deception detection.In this paper,we investigate video-based deception detection considering both apparent visual features such as eye gaze,head pose and facial action unit(AU),and non-contact heart rate detected by remote photoplethysmography(rPPG)technique.Multiple wrapper-based feature selection methods combined with the K-nearest neighbor(KNN)and support vector machine(SVM)classifiers are employed to screen the most effective features for deception detection.We evaluate the performance of the proposed method on both a self-collected physiological-assisted visual deception detection(PV3D)dataset and a public bag-oflies(BOL)dataset.Experimental results demonstrate that the SVM classifier with symbiotic organisms search(SOS)feature selection yields the best overall performance,with an area under the curve(AUC)of 83.27%and accuracy(ACC)of 83.33%for PV3D,and an AUC of 71.18%and ACC of 70.33%for BOL.This demonstrates the stability and effectiveness of the proposed method in video-based deception detection tasks. 展开更多
关键词 deception detection apparent visual features remote photoplethysmography non-contact heart rate feature selection
在线阅读 下载PDF
Directly predicting N_(2) electroreduction reaction free energy using interpretable machine learning with non-DFT calculated features
5
作者 Yaqin Zhang Yuhang Wang +1 位作者 Ninggui Ma Jun Fan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期139-148,I0004,共11页
Electrocatalytic nitrogen reduction to ammonia has garnered significant attention with the blooming of single-atom catalysts(SACs),showcasing their potential for sustainable and energy-efficient ammonia production.How... Electrocatalytic nitrogen reduction to ammonia has garnered significant attention with the blooming of single-atom catalysts(SACs),showcasing their potential for sustainable and energy-efficient ammonia production.However,cost-effectively designing and screening efficient electrocatalysts remains a challenge.In this study,we have successfully established interpretable machine learning(ML)models to evaluate the catalytic activity of SACs by directly and accurately predicting reaction Gibbs free energy.Our models were trained using non-density functional theory(DFT)calculated features from a dataset comprising 90 graphene-supported SACs.Our results underscore the superior prediction accuracy of the gradient boosting regression(GBR)model for bothΔg(N_(2)→NNH)andΔG(NH_(2)→NH_(3)),boasting coefficient of determination(R^(2))score of 0.972 and 0.984,along with root mean square error(RMSE)of 0.051 and 0.085 eV,respectively.Moreover,feature importance analysis elucidates that the high accuracy of GBR model stems from its adept capture of characteristics pertinent to the active center and coordination environment,unveilling the significance of elementary descriptors,with the colvalent radius playing a dominant role.Additionally,Shapley additive explanations(SHAP)analysis provides global and local interpretation of the working mechanism of the GBR model.Our analysis identifies that a pyrrole-type coordination(flag=0),d-orbitals with a moderate occupation(N_(d)=5),and a moderate difference in covalent radius(r_(TM-ave)near 140 pm)are conducive to achieving high activity.Furthermore,we extend the prediction of activity to more catalysts without additional DFT calculations,validating the reliability of our feature engineering,model training,and design strategy.These findings not only highlight new opportunity for accelerating catalyst design using non-DFT calculated features,but also shed light on the working mechanism of"black box"ML model.Moreover,the model provides valuable guidance for catalytic material design in multiple proton-electron coupling reactions,particularly in driving sustainable CO_(2),O_(2),and N_(2) conversion. 展开更多
关键词 Nitrogen reduction Single-atom catalyst Interpretable machine learning Graphene Non-DFT features
在线阅读 下载PDF
Utilizing spatio-temporal feature fusion in videos for detecting the fluidity of coal water slurry
6
作者 Meijie Sun Ziqi Lv +3 位作者 Zhiqiang Xu Haimei Lv Yanan Tu Weidong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第11期1587-1597,共11页
The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection m... The fluidity of coal-water slurry(CWS)is crucial for various industrial applications such as long-distance transportation,gasification,and combustion.However,there is currently a lack of rapid and accurate detection methods for assessing CWS fluidity.This paper proposed a method for analyzing the fluidity using videos of CWS dripping processes.By integrating the temporal and spatial features of each frame in the video,a multi-cascade classifier for CWS fluidity is established.The classifier distinguishes between four levels(A,B,C,and D)based on the quality of fluidity.The preliminary classification of A and D is achieved through feature engineering and the XGBoost algorithm.Subsequently,convolutional neural networks(CNN)and long short-term memory(LSTM)are utilized to further differentiate between the B and C categories which are prone to confusion.Finally,through detailed comparative experiments,the paper demonstrates the step-by-step design process of the proposed method and the superiority of the final solution.The proposed method achieves an accuracy rate of over 90%in determining the fluidity of CWS,serving as a technical reference for future industrial applications. 展开更多
关键词 Coal water slurry Spatio-temporal feature CNN-LSTM Video classification Machine vision
在线阅读 下载PDF
A Fusion Localization Method Based on Target Measurement Error Feature Complementarity and Its Application
7
作者 Xin Yang Hongming Liu +3 位作者 Xiaoke Wang Wen Yu Jingqiu Liu Sipei Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期75-88,共14页
In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement err... In the multi-radar networking system,aiming at the problem of locating long-distance targets synergistically with difficulty and low accuracy,a dual-station joint positioning method based on the target measurement error feature complementarity is proposed.For dual-station joint positioning,by constructing the target positioning error distribution model and using the complementarity of spatial measurement errors of the same long-distance target,the area with high probability of target existence can be obtained.Then,based on the target distance information,the midpoint of the intersection between the target positioning sphere and the positioning tangent plane can be solved to acquire the target's optimal positioning result.The simulation demonstrates that this method greatly improves the positioning accuracy of target in azimuth direction.Compared with the traditional the dynamic weighted fusion(DWF)algorithm and the filter-based dynamic weighted fusion(FBDWF)algorithm,it not only effectively eliminates the influence of systematic error in the azimuth direction,but also has low computational complexity.Furthermore,for the application scenarios of multi-radar collaborative positioning and multi-sensor data compression filtering in centralized information fusion,it is recommended that using radar with higher ranging accuracy and the lengths of baseline between radars are 20–100 km. 展开更多
关键词 dual-station positioning feature complementarity information fusion engineering applicability
在线阅读 下载PDF
The real-time dynamic liquid level calculation method of the sucker rod well based on multi-view features fusion
8
作者 Cheng-Zhe Yin Kai Zhang +4 位作者 Jia-Yuan Liu Xin-Yan Wang Min Li Li-Ming Zhang Wen-Sheng Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3575-3586,共12页
In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the ... In the production of the sucker rod well, the dynamic liquid level is important for the production efficiency and safety in the lifting process. It is influenced by multi-source data which need to be combined for the dynamic liquid level real-time calculation. In this paper, the multi-source data are regarded as the different views including the load of the sucker rod and liquid in the wellbore, the image of the dynamometer card and production dynamics parameters. These views can be fused by the multi-branch neural network with special fusion layer. With this method, the features of different views can be extracted by considering the difference of the modality and physical meaning between them. Then, the extraction results which are selected by multinomial sampling can be the input of the fusion layer.During the fusion process, the availability under different views determines whether the views are fused in the fusion layer or not. In this way, not only the correlation between the views can be considered, but also the missing data can be processed automatically. The results have shown that the load and production features fusion(the method proposed in this paper) performs best with the lowest mean absolute error(MAE) 39.63 m, followed by the features concatenation with MAE 42.47 m. They both performed better than only a single view and the lower MAE of the features fusion indicates that its generalization ability is stronger. In contrast, the image feature as a single view contributes little to the accuracy improvement after fused with other views with the highest MAE. When there is data missing in some view, compared with the features concatenation, the multi-view features fusion will not result in the unavailability of a large number of samples. When the missing rate is 10%, 30%, 50% and 80%, the method proposed in this paper can reduce MAE by 5.8, 7, 9.3 and 20.3 m respectively. In general, the multi-view features fusion method proposed in this paper can improve the accuracy obviously and process the missing data effectively, which helps provide technical support for real-time monitoring of the dynamic liquid level in oil fields. 展开更多
关键词 Dynamic liquid level Multi view features fusion Sucker rod well Dynamometer cards
在线阅读 下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
9
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 Data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers feature selection
在线阅读 下载PDF
Anomaly Detection Method Using Feature Reconstruction Based Knowledge Distillation
10
作者 ZHU Xin-yu SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期115-124,236,共11页
In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationshi... In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection. 展开更多
关键词 feature Reconstruction Anomaly Detection Distillation Mechanism Industrial Production
在线阅读 下载PDF
Advanced 3D ordered electrodes for PEMFC applications: From structural features and fabrication methods to the controllable design of catalyst layers
11
作者 Kaili Wang Tingting Zhou +4 位作者 Zhen Cao Zhimin Yuan Hongyan He Maohong Fan Zaiyong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第9期1336-1365,共30页
The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, iono... The catalyst layers(CLs) electrode is the key component of the membrane electrode assembly(MEA) in proton exchange membrane fuel cells(PEMFCs). Conventional electrodes for PEMFCs are composed of carbon-supported, ionomer, and Pt nanoparticles, all immersed together and sprayed with a micron-level thickness of CLs. They have a performance trade-off where increasing the Pt loading leads to higher performance of abundant triple-phase boundary areas but increases the electrode cost. Major challenges must be overcome before realizing its wide commercialization. Literature research revealed that it is impossible to achieve performance and durability targets with only high-performance catalysts, so the controllable design of CLs architecture in MEAs for PEMFCs must now be the top priority to meet industry goals. From this perspective, a 3D ordered electrode circumvents this issue with a support-free architecture and ultrathin thickness while reducing noble metal Pt loadings. Herein, we discuss the motivation in-depth and summarize the necessary CLs structural features for designing ultralow Pt loading electrodes. Critical issues that remain in progress for 3D ordered CLs must be studied and characterized. Furthermore, approaches for 3D ordered CLs architecture electrode development, involving material design, structure optimization, preparation technology, and characterization techniques, are summarized and are expected to be next-generation CLs for PEMFCs. Finally, the review concludes with perspectives on possible research directions of CL architecture to address the significant challenges in the future. 展开更多
关键词 PEMFC 3D ordered electrode Structural features Preparation technology Ultralow Pt loading
在线阅读 下载PDF
Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning
12
作者 Minggang Xu Chong Li +1 位作者 Ying Chen Wu Wei 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期422-435,共14页
Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine ... Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance. 展开更多
关键词 automated pavement crack detection octave convolutional network hierarchical feature multiscale MULTIFREQUENCY
在线阅读 下载PDF
Accuracy comparison and improvement for state of health estimation of lithium-ion battery based on random partial recharges and feature engineering
13
作者 Xingjun Li Dan Yu +1 位作者 Søren Byg Vilsen Daniel Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期591-604,共14页
State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging pro... State of health(SOH)estimation of e-mobilities operated in real and dynamic conditions is essential and challenging.Most of existing estimations are based on a fixed constant current charging and discharging aging profiles,which overlooked the fact that the charging and discharging profiles are random and not complete in real application.This work investigates the influence of feature engineering on the accuracy of different machine learning(ML)-based SOH estimations acting on different recharging sub-profiles where a realistic battery mission profile is considered.Fifteen features were extracted from the battery partial recharging profiles,considering different factors such as starting voltage values,charge amount,and charging sliding windows.Then,features were selected based on a feature selection pipeline consisting of filtering and supervised ML-based subset selection.Multiple linear regression(MLR),Gaussian process regression(GPR),and support vector regression(SVR)were applied to estimate SOH,and root mean square error(RMSE)was used to evaluate and compare the estimation performance.The results showed that the feature selection pipeline can improve SOH estimation accuracy by 55.05%,2.57%,and 2.82%for MLR,GPR and SVR respectively.It was demonstrated that the estimation based on partial charging profiles with lower starting voltage,large charge,and large sliding window size is more likely to achieve higher accuracy.This work hopes to give some insights into the supervised ML-based feature engineering acting on random partial recharges on SOH estimation performance and tries to fill the gap of effective SOH estimation between theoretical study and real dynamic application. 展开更多
关键词 feature engineering Dynamic forklift aging profile State of health comparison Machine learning Lithium-ion batteries
在线阅读 下载PDF
DIFNet:SAR RFI suppression network based on domain invariant features
14
作者 LYU Wen-Hao FANG Fu-Ping TIAN Yuan-Rong 《红外与毫米波学报》 CSCD 北大核心 2024年第6期775-783,共9页
Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RF... Synthetic aperture radar(SAR)is a high-resolution two-dimensional imaging radar.However,during the imaging process,SAR is susceptible to intentional and unintentional interference,with radio frequency inter⁃ference(RFI)being the most common type,leading to a severe degradation in image quality.To address the above problem,numerous algorithms have been proposed.Although inpainting networks have achieved excellent results,their generalization is unclear.Whether they still work effectively in cross-sensor experiments needs fur⁃ther verification.Through the time-frequency analysis to interference signals,this work finds that interference holds domain invariant features between different sensors.Therefore,this work reconstructs the loss function and extracts the domain invariant features to improve its generalization.Ultimately,this work proposes a SAR RFI suppression method based on domain invariant features,and embeds the RFI suppression into SAR imaging pro⁃cess.Compared to traditional notch filtering methods,the proposed approach not only removes interference but also effectively preserves strong scattering targets.Compared to PISNet,our method can extract domain invariant features and hold better generalization ability,and even in the cross-sensor experiments,our method can still achieve excellent results.In cross-sensor experiments,training data and testing data come from different radar platforms with different parameters,so cross-sensor experiments can provide evidence for the generalization. 展开更多
关键词 synthetic aperture radar radio frequency interference suppression domain invariant features SAR imaging
在线阅读 下载PDF
Application of Feature, Event, and Process Methods to Leakage Scenario Development for Offshore CO_(2) Geological Storage
15
作者 Qiang Liu Yanzun Li +2 位作者 Meng Jing Qi Li Guizhen Liu 《哈尔滨工程大学学报(英文版)》 CSCD 2024年第3期608-616,共9页
Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substant... Offshore carbon dioxide(CO_(2)) geological storage(OCGS) represents a significant strategy for addressing climate change by curtailing greenhouse gas emissions. Nonetheless, the risk of CO_(2) leakage poses a substantial concern associated with this technology. This study introduces an innovative approach for establishing OCGS leakage scenarios, involving four pivotal stages, namely, interactive matrix establishment, risk matrix evaluation, cause–effect analysis, and scenario development, which has been implemented in the Pearl River Estuary Basin in China. The initial phase encompassed the establishment of an interaction matrix for OCGS systems based on features, events, and processes. Subsequent risk matrix evaluation and cause–effect analysis identified key system components, specifically CO_(2) injection and faults/features. Building upon this analysis, two leakage risk scenarios were successfully developed, accompanied by the corresponding mitigation measures. In addition, this study introduces the application of scenario development to risk assessment, including scenario numerical simulation and quantitative assessment. Overall, this research positively contributes to the sustainable development and safe operation of OCGS projects and holds potential for further refinement and broader application to diverse geographical environments and project requirements. This comprehensive study provides valuable insights into the establishment of OCGS leakage scenarios and demonstrates their practical application to risk assessment, laying the foundation for promoting the sustainable development and safe operation of ocean CO_(2) geological storage projects while proposing possibilities for future improvements and broader applications to different contexts. 展开更多
关键词 Offshore CO_(2)geological storage features events and processes Scenario development Interaction matrix Risk matrix assessment
在线阅读 下载PDF
Deep learning CNN-APSO-LSSVM hybrid fusion model for feature optimization and gas-bearing prediction
16
作者 Jiu-Qiang Yang Nian-Tian Lin +3 位作者 Kai Zhang Yan Cui Chao Fu Dong Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2329-2344,共16页
Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the i... Conventional machine learning(CML)methods have been successfully applied for gas reservoir prediction.Their prediction accuracy largely depends on the quality of the sample data;therefore,feature optimization of the input samples is particularly important.Commonly used feature optimization methods increase the interpretability of gas reservoirs;however,their steps are cumbersome,and the selected features cannot sufficiently guide CML models to mine the intrinsic features of sample data efficiently.In contrast to CML methods,deep learning(DL)methods can directly extract the important features of targets from raw data.Therefore,this study proposes a feature optimization and gas-bearing prediction method based on a hybrid fusion model that combines a convolutional neural network(CNN)and an adaptive particle swarm optimization-least squares support vector machine(APSO-LSSVM).This model adopts an end-to-end algorithm structure to directly extract features from sensitive multicomponent seismic attributes,considerably simplifying the feature optimization.A CNN was used for feature optimization to highlight sensitive gas reservoir information.APSO-LSSVM was used to fully learn the relationship between the features extracted by the CNN to obtain the prediction results.The constructed hybrid fusion model improves gas-bearing prediction accuracy through two processes of feature optimization and intelligent prediction,giving full play to the advantages of DL and CML methods.The prediction results obtained are better than those of a single CNN model or APSO-LSSVM model.In the feature optimization process of multicomponent seismic attribute data,CNN has demonstrated better gas reservoir feature extraction capabilities than commonly used attribute optimization methods.In the prediction process,the APSO-LSSVM model can learn the gas reservoir characteristics better than the LSSVM model and has a higher prediction accuracy.The constructed CNN-APSO-LSSVM model had lower errors and a better fit on the test dataset than the other individual models.This method proves the effectiveness of DL technology for the feature extraction of gas reservoirs and provides a feasible way to combine DL and CML technologies to predict gas reservoirs. 展开更多
关键词 Multicomponent seismic data Deep learning Adaptive particle swarm optimization Convolutional neural network Least squares support vector machine feature optimization Gas-bearing distribution prediction
在线阅读 下载PDF
基于Bag of Features算法的车辆图像识别研究 被引量:9
17
作者 何友松 吴炜 +2 位作者 陈默 杨晓敏 罗代升 《电视技术》 北大核心 2009年第12期104-107,共4页
将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描... 将Bag of Features算法引入汽车图像识别领域中,并提出了将DoG(Difference of Gaussian)特征提取算法和PLSA分类算法结合在一起实现车辆和背景图像分类。首先用DoG特征提取算法提取图像特征,用这些特征聚类产生码书并对图像进行柱状图描述,最后设计PLSA分类器对车辆图像和背景图像进行分类。实验对比了该算法与Tamura纹理特征算法和Gabor纹理特征算法在车辆图像识别中的效果。结果表明本文算法分类正确率优于另外两种方法。 展开更多
关键词 BAG of features算法 码书 SIFT K-MEANS 概率潜在语义分析
在线阅读 下载PDF
New Algorithm for Image Target Recognition Based on Fractal Feature Fusion 被引量:2
18
作者 潘秀琴 侯朝桢 苏利敏 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期342-345,共4页
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com... By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid. 展开更多
关键词 FRACTAL feature fusion target recognition
在线阅读 下载PDF
NEW CORNER DETECTION ALGORITHM BASED ON MULTI-FEATURE SYNTHESIS 被引量:3
19
作者 邱卫国 昂海松 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期174-178,共5页
Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditio... Corner detection is a chief step in computer vision. A new corner detection algorithm in planar curves is proposed. Firstly, from the human perception, two key characteristics are given as an amendment of the traditional corner properties. Based on the two properties, the concept of the fuzzy set is introduced into a detection. Secondly, the extracted-formulae of three groups including the features of the corner subject degree are derived. Through synthesizing the features of three groups, the judgments of the corner detection, location, and optimization are obtained. Finally, by using the algorithm the detection results of several examples and feature curves for some interested parts, as well as the detection results for the test images history in references are given. Results show that the algorithm is easily realized after adopting the fuzzy set, and the detection effect is very ideal. 展开更多
关键词 image feature corner detection fuzzy infe-rence subject degree
在线阅读 下载PDF
NEW SHADOWED C-MEANS CLUSTERING WITH FEATURE WEIGHTS 被引量:2
20
作者 王丽娜 王建东 姜坚 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第3期273-283,共11页
Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the ... Partition-based clustering with weighted feature is developed in the framework of shadowed sets. The objects in the core and boundary regions, generated by shadowed sets-based clustering, have different impact on the prototype of each cluster. By integrating feature weights, a formula for weight calculation is introduced to the clustering algorithm. The selection of weight exponent is crucial for good result and the weights are updated iteratively with each partition of clusters. The convergence of the weighted algorithms is given, and the feasible cluster validity indices of data mining application are utilized. Experimental results on both synthetic and real-life numerical data with different feature weights demonstrate that the weighted algorithm is better than the other unweighted algorithms. 展开更多
关键词 fuzzy C-means shadowed sets shadowed C-means feature weights cluster validity index
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部