基于关系数据库的关键词查询,使得用户在不需要掌握结构化查询语言和数据库模式的情况下,可以方便地进行关系数据库查询.给定一个关键词查询,已有的方法通过数据库中的主外键关联,查询得到包含关键词的元组集合.但是,在很多实际应用中,...基于关系数据库的关键词查询,使得用户在不需要掌握结构化查询语言和数据库模式的情况下,可以方便地进行关系数据库查询.给定一个关键词查询,已有的方法通过数据库中的主外键关联,查询得到包含关键词的元组集合.但是,在很多实际应用中,元组集合的聚合结果对用户更有价值;研究了基于关系数据库的top-k聚合关键词查询,提出了基于递归的聚合单元枚举算法——基于递归的完全搜索(recursion-based full search,RFS).为了获得更好的查询性能,设计了新的排序方法、二维索引和快速搜索算法——基于输出的快速搜索(output-based quick search,OQS),从而可以高效地枚举top-k个聚合单元;在不同的数据集上进行了大量的实验,实验结果表明OQS算法具有良好的查询性能.展开更多
自动知识抽取方法可以自动识别并抽取Web文档中与本体匹配的事实知识。利用这些事实知识既可以构建基于知识的服务,也能够为语义Web的实现提供必要的语义数据。但面向自然语言特别是中文自然语言的自动知识抽取非常困难.提出了基于语义...自动知识抽取方法可以自动识别并抽取Web文档中与本体匹配的事实知识。利用这些事实知识既可以构建基于知识的服务,也能够为语义Web的实现提供必要的语义数据。但面向自然语言特别是中文自然语言的自动知识抽取非常困难.提出了基于语义Web理论和中文自然语言处理(natural language processing,NLP)技术的自动知识抽取新方法AKE,用聚集体知识概念刻画N元关系知识,能够在不使用大规模语言知识库和同义词表的情况下自动识别中文自然语言文档内容中显式和隐含的简单事实知识和N元关系复杂事实知识.实验结果表明该方法优于目前已知的其他方法.展开更多
文摘基于关系数据库的关键词查询,使得用户在不需要掌握结构化查询语言和数据库模式的情况下,可以方便地进行关系数据库查询.给定一个关键词查询,已有的方法通过数据库中的主外键关联,查询得到包含关键词的元组集合.但是,在很多实际应用中,元组集合的聚合结果对用户更有价值;研究了基于关系数据库的top-k聚合关键词查询,提出了基于递归的聚合单元枚举算法——基于递归的完全搜索(recursion-based full search,RFS).为了获得更好的查询性能,设计了新的排序方法、二维索引和快速搜索算法——基于输出的快速搜索(output-based quick search,OQS),从而可以高效地枚举top-k个聚合单元;在不同的数据集上进行了大量的实验,实验结果表明OQS算法具有良好的查询性能.
文摘自动知识抽取方法可以自动识别并抽取Web文档中与本体匹配的事实知识。利用这些事实知识既可以构建基于知识的服务,也能够为语义Web的实现提供必要的语义数据。但面向自然语言特别是中文自然语言的自动知识抽取非常困难.提出了基于语义Web理论和中文自然语言处理(natural language processing,NLP)技术的自动知识抽取新方法AKE,用聚集体知识概念刻画N元关系知识,能够在不使用大规模语言知识库和同义词表的情况下自动识别中文自然语言文档内容中显式和隐含的简单事实知识和N元关系复杂事实知识.实验结果表明该方法优于目前已知的其他方法.