期刊文献+
共找到1,894篇文章
< 1 2 95 >
每页显示 20 50 100
Multi-platform collaborative MRC-PSO algorithm for anti-ship missile path planning
1
作者 LIU Gang GUO Xinyuan +2 位作者 HUANG Dong CHEN Kezhong LI Wu 《Journal of Systems Engineering and Electronics》 2025年第2期494-509,共16页
To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO al... To solve the problem of multi-platform collaborative use in anti-ship missile (ASM) path planning, this paper pro-posed multi-operator real-time constraints particle swarm opti-mization (MRC-PSO) algorithm. MRC-PSO algorithm utilizes a semi-rasterization environment modeling technique and inte-grates the geometric gradient law of ASMs which distinguishes itself from other collaborative path planning algorithms by fully considering the coupling between collaborative paths. Then, MRC-PSO algorithm conducts chunked stepwise recursive evo-lution of particles while incorporating circumvent, coordination, and smoothing operators which facilitates local selection opti-mization of paths, gradually reducing algorithmic space, accele-rating convergence, and enhances path cooperativity. Simula-tion experiments comparing the MRC-PSO algorithm with the PSO algorithm, genetic algorithm and operational area cluster real-time restriction (OACRR)-PSO algorithm, which demon-strate that the MRC-PSO algorithm has a faster convergence speed, and the average number of iterations is reduced by approximately 75%. It also proves that it is equally effective in resolving complex scenarios involving multiple obstacles. More-over it effectively addresses the problem of path crossing and can better satisfy the requirements of multi-platform collabora-tive path planning. The experiments are conducted in three col-laborative operation modes, namely, three-to-two, three-to-three, and four-to-two, and the outcomes demonstrate that the algorithm possesses strong universality. 展开更多
关键词 anti-ship missiles multi-platform collaborative path planning particle swarm optimization(pso)algorithm
在线阅读 下载PDF
基于PSO-GA模型的供水管网漏损预测研究 被引量:1
2
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 pso-GA算法 漏损定位 EPANET
在线阅读 下载PDF
基于IPSO算法优化SVM的睡眠分期模型
3
作者 张宇 白国长 王成 《传感器与微系统》 北大核心 2025年第8期138-142,共5页
针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;... 针对目前睡眠分期中存在的依赖人工判别效率低、睡眠分期精度不高等问题,提出了一种基于改进粒子群优化算法优化支持向量机(IPSO-SVM)的睡眠分期模型,通过脑电(EEG)信号对睡眠过程进行准确分期。首先,对EEG信号进行滤波、分段等预处理;其次,提取EEG信号的时域、频域、非线性特征;最后,通过IPSO-SVM算法建立睡眠分期模型。该模型在PSO算法中引入模拟退火算法来提升算法的搜索能力,同时引入惯性权重自适应变异使粒子能够跳出局部最优解。使用ISRUC-Sleep数据集的前6位受试者数据对IPSO-SVM分类模型进行验证。结果表明:IPSO-SVM模型的平均睡眠分期准确率为92.34%,K系数为0.88,改进的睡眠分期模型具有较高的准确率和系统稳定性。 展开更多
关键词 粒子群优化算法 支持向量机 模拟退火 自适应变异
在线阅读 下载PDF
基于PSO-OBL算法的平面移动类立体车库车辆调度优化模型 被引量:1
4
作者 曾超 杨子涵 +1 位作者 崔子豪 于立 《科学技术与工程》 北大核心 2025年第2期816-824,共9页
针对平面移动类立体车库在车辆存取效率方面的瓶颈问题,提出了一种基于PSO-OBL算法的存取车辆调度优化模型。该模型旨在通过精确调控车辆存取策略和时间管理,缩短车辆存取运行时间及用户平均等待时间。为提升传统粒子群算法的寻优效能... 针对平面移动类立体车库在车辆存取效率方面的瓶颈问题,提出了一种基于PSO-OBL算法的存取车辆调度优化模型。该模型旨在通过精确调控车辆存取策略和时间管理,缩短车辆存取运行时间及用户平均等待时间。为提升传统粒子群算法的寻优效能和收敛速率,将粒子间相互协作与信息交流机制融入算法框架,并结合反向学习机制以实现问题的高效求解。实验数据表明,与传统粒子群算法相比,PSO-OBL算法在顾客平均等待时间、平均服务时间、平均等待队长以及平均运行能耗等方面均实现了显著提升,研究结果将为平面移动类立体车库的存取效率提供优化理论支持和实践参考。 展开更多
关键词 停车规划与管理 机械式立体车库 平面移动类立体车库 存取调度优化 pso-OBL算法
在线阅读 下载PDF
基于语义相似度与改进PSO算法的云制造能力需求模型与匹配策略研究
5
作者 李晓波 郭银章 《现代制造工程》 北大核心 2025年第6期30-44,共15页
针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能... 针对云计算环境下智能制造资源服务化共享中制造能力与任务需求之间的搜索匹配与服务组合问题,提出了一种基于语义相似度与改进粒子群优化(Particle Swarm Optimization,PSO)算法的云制造能力需求模型与匹配策略。首先,在提出云制造能力需求模型的基础上,采用领域本体树的概念提出了概念相似度、句子相似度和数值相似度的计算方法,实现了基于语义相似度的云制造能力需求智能化服务搜索;然后,针对云制造能力的服务组合问题,在分析了制造能力服务质量(Quality of Service,QoS)属性的基础上,采用层次分析法(Analytic Hierarchy Process,AHP)将各个属性进行归一化求和,给出了一种基于改进PSO算法的服务组合方法;最后,通过实验对比发现所提出的方法优于现有方法并实现了云制造能力需求智能匹配原型系统。 展开更多
关键词 云制造能力 任务需求 搜索匹配 服务组合 语义相似度 改进粒子群优化算法
在线阅读 下载PDF
基于PSO-Kriging模型的尾矿库三维稳定性分析
6
作者 黄德镛 黄日胜 +2 位作者 史凯东 吕世玮 陈治宇 《有色金属(中英文)》 北大核心 2025年第3期474-483,共10页
尾矿库是矿业活动中不可或缺的组成部分,同时也带来了显著的环境和安全风险。在尾矿累积过程中,物理沉淀、水动力作用和化学反应等多重因素导致尾矿的物理特性呈现出明显的空间差异性和分布不均匀性。现有的研究方法大多忽略了尾矿材料... 尾矿库是矿业活动中不可或缺的组成部分,同时也带来了显著的环境和安全风险。在尾矿累积过程中,物理沉淀、水动力作用和化学反应等多重因素导致尾矿的物理特性呈现出明显的空间差异性和分布不均匀性。现有的研究方法大多忽略了尾矿材料的不均一性和复杂性。而研究这些特性需进行大量的物理试验,虽然这些试验可以重复,但存在着系统误差且成本高昂,因此可以构建一个近似模型进行机械学习预测。以Kriging理论为基础,通过对多种寻优算法进行适应度对比以选出最佳的寻优算法,构建出高效的改进Kriging模型,为了验证PSO-Kriging模型的性能,采用估值分析与误差分析的方式对本模型插值效果进行综合评价,结果显示新模型提高了预测精度和变化趋势。在此基础上得到一组符合尾矿库实际情况的插值点特征力学参数。从空间变异性出发对尾矿库稳定性进行分析。基于一般沉积性数值模型,将插值点坐标与数值模型中网格模型中坐标相对应,通过Fish函数,将插值点力学参数即天然重度、黏聚力与内摩擦角的数据导入网格模型中。替换原网格点的力学参数,构建出考虑空间变异性的尾矿库三维数值模型,并对该模型进行分析,结果表明由于空间差异信息增加,计算结果更能反映实际状况。 展开更多
关键词 尾矿库 稳定性分析 KRIGING插值 pso优化算法 三维数值模拟
在线阅读 下载PDF
基于GA-PSO优化的汽车轨迹跟踪和稳定性协同控制
7
作者 田韶鹏 吴思沛 王龙 《重庆理工大学学报(自然科学)》 北大核心 2025年第5期10-19,共10页
针对恶劣工况下汽车轨迹跟踪控制的精度和稳定性问题,提出一种基于分层控制策略的解决方案。上层轨迹跟踪控制器和下层直接横摆力矩控制器分别基于模型预测控制(model predictive control,MPC)和滑模控制(sliding mode control,SMC)实现... 针对恶劣工况下汽车轨迹跟踪控制的精度和稳定性问题,提出一种基于分层控制策略的解决方案。上层轨迹跟踪控制器和下层直接横摆力矩控制器分别基于模型预测控制(model predictive control,MPC)和滑模控制(sliding mode control,SMC)实现;通过遗传粒子群优化算法(GA-PSO)优化不同车速和路面附着系数下的控制器参数,得到适用于不同驾驶条件的最佳控制器时域和控制参数;基于此设计协同控制器,进一步改善了轨迹跟踪的准确性和稳定性。为验证策略有效性,在CarSim-Simulink联合仿真平台进行仿真实验。仿真结果表明:所提出控制策略能显著提升追踪效果和横摆稳定性,平均横向误差分别减少89.9%、46.4%和43.3%。 展开更多
关键词 智能车辆 轨迹跟踪 稳定性控制 模型预测控制 滑模控制 遗传粒子群算法
在线阅读 下载PDF
基于PSO-SVR算法的钢板-混凝土组合连梁承载力预测
8
作者 田建勃 闫靖帅 +2 位作者 王晓磊 赵勇 史庆轩 《振动与冲击》 北大核心 2025年第7期155-162,共8页
为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-suppor... 为准确预测钢板-混凝土组合(steel plate-RC composite,PRC)连梁承载力,本文分别通过支持向量机回归算法(support vector regression,SVR)、极端梯度提升算法(XGBoost)和粒子群优化的支持向量机回归(particle swarm optimization-support vector regression,PSO-SVR)算法进行了PRC连梁试验数据的回归训练,此外,通过使用Sobol敏感性分析方法分析了数据特征参数对PRC连梁承载力的影响。结果表明,基于SVR、极端梯度提升算法(extreme gradient boosting,XGBoost)和PSO-SVR的预测模型平均绝对百分比误差分别为5.48%、7.65%和4.80%,其中,基于PSO-SVR算法的承载力预测模型具有最高的预测精度,模型的鲁棒性和泛化能力更强。此外,特征参数钢板率(ρ_(p))、截面高度(h)和连梁跨高比(l_(n)/h)对PRC连梁承载力影响最大,三者全局影响指数总和超过0.75,其中,钢板率(ρ_(p))是对PRC连梁承载力影响最大的单一因素,一阶敏感性指数和全局敏感性指数分别为0.3423和0.3620,以期为PRC连梁在实际工程中的设计及应用提供参考。 展开更多
关键词 钢板-混凝土组合连梁 机器学习 粒子群优化的支持向量机回归(pso-SVR)算法 承载力 敏感性分析
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:1
9
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved pso algorithm
在线阅读 下载PDF
沙柳平茬刀具减磨优化——基于PSO-BP神经网络结合GA算法 被引量:2
10
作者 韩志武 刘志刚 +3 位作者 常涛涛 裴承慧 张鹏峰 张建强 《农机化研究》 北大核心 2025年第8期259-265,共7页
沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬... 沙柳作为我国西北地区主要防风固沙树种,其机械化平茬更新对生态环境保护和社会经济发展具有重要意义。然而平茬圆锯片磨损严重,成为制约工作效率和平茬效果提升的主要技术瓶颈。为实现沙柳平茬圆锯片减磨性能的优化设计,通过野外平茬试验获取不同锯齿结构下的磨损退化量数据,基于磨损数据建立PSO(Particle Swarm Optimization)算法优化的BP(Back Propagation)神经网络模型,用于预测圆锯片的磨损量;然后,将训练好的PSO-BP神经网络模型与GA(Genetic Algorithm)算法相结合,以磨损量最小为优化目标,寻找圆锯片锯齿结构的最优参数。结果表明:所建立的模型成功实现了对圆锯片前角、后角、前刀面斜磨角等结构参数的多目标优化,优化得到的圆锯片参数使磨损量相对最小,提升了圆锯片的减磨性能。由此为进一步改善沙柳平茬圆锯片的切削及减磨损性能提供了新的设计思路,为提高沙柳平茬工作效率提供了技术支持,有利于生态环境保护和农业可持续发展。 展开更多
关键词 沙柳 平茬圆锯片 减磨优化 pso-BP神经网络 遗传算法
在线阅读 下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计 被引量:2
11
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 pso-BP神经网络 模糊PID算法 控制系统
在线阅读 下载PDF
基于PSO-ChOA-Elman神经网络的船舶柴油机故障诊断
12
作者 尹文海 杨志勇 +1 位作者 尚前明 杨安邦 《船海工程》 北大核心 2025年第4期127-133,140,共8页
针对传统船舶柴油机故障诊断方法的局限性,提出一种基于粒子群算法(PSO)和黑猩猩算法(ChOA)相结合,优化Elman神经网络的船舶柴油机故障诊断方法,旨在提高故障诊断的准确性和普适性。对MAN B&W 7K98MC型柴油机的常见故障数据进行预处... 针对传统船舶柴油机故障诊断方法的局限性,提出一种基于粒子群算法(PSO)和黑猩猩算法(ChOA)相结合,优化Elman神经网络的船舶柴油机故障诊断方法,旨在提高故障诊断的准确性和普适性。对MAN B&W 7K98MC型柴油机的常见故障数据进行预处理,以消除不同量纲和数量级数据间的干扰;构建Elman神经网络模型,并使用PSO和ChOA算法对网络的参数进行优化,以提升模型性能。文中详细介绍了Elman神经网络的结构和数学模型,以及PSO和ChOA算法的原理和改进措施。通过Matlab平台的模拟实验,对比标准Elman神经网络和改进后的PSO-ChOA-Elman神经网络在故障诊断中的性能。结果显示,改进后的模型故障诊断的准确率达到99.4%,明显优于原始模型的94.01%,同时具有更高的稳定性和更快的收敛速度。所提出的基于PSO-ChOA-Elman神经网络的故障诊断方法有效地提高了船舶柴油机故障诊断的准确性和效率,为船舶柴油机的健康管理和故障预防提供一种新的技术手段。 展开更多
关键词 柴油机 故障诊断 ELMAN神经网络 粒子群优化算法 黑猩猩优化算法
在线阅读 下载PDF
基于PSO算法的煤矿瓦斯事故致因分析 被引量:1
13
作者 张洽 憨瑞东 陈涛 《中国安全科学学报》 北大核心 2025年第2期104-110,共7页
为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类... 为科学防治煤矿瓦斯事故,系统分析我国煤矿瓦斯事故风险因素以及因素耦合关系,采用Python软件,建立基于粒子群优化(PSO)算法的关联规则挖掘模型,并进行验证;结合人因分析与分类系统(HFACS)事故风险模型,对煤矿瓦斯事故风险因素进行分类,并使用PSO-频繁模式增长(FP-growth)算法挖掘煤矿瓦斯事故调查报告的关联规则。结果表明:PSO-FP-growth算法相较于PSO-Apriori算法运行速度及关联规则效果更优;根据瓦斯事故风险因素关联规则可视化及高支持度关联因素显示,我国煤矿瓦斯事故发生的主要风险因素是煤矿企业安全监督管理存在缺陷、瓦斯防治技术不到位、员工安全意识淡薄以及现场管理人员管理意识和技术不到位造成的。 展开更多
关键词 粒子群优化(pso)算法 煤矿瓦斯事故 事故致因 关联规则 人因分析与分类系统(HFACS)
在线阅读 下载PDF
基于PSO-CNN模型和流固耦合的三角钢闸门优化算法
14
作者 马骥 董现 +3 位作者 任萌萌 李宇男 朱召泉 王雅迪 《水电能源科学》 北大核心 2025年第1期141-144,149,共5页
针对大型三角钢闸门流固耦合下优化设计工作量巨大、计算机难以短时间实现的问题,提出PSO-CNN模型即粒子群算法优化卷积神经网络模型,以改善仿真模型计算效率和普通神经网络模型计算精度的问题。对比PSO-CNN模型与CNN模型误差曲线与偏... 针对大型三角钢闸门流固耦合下优化设计工作量巨大、计算机难以短时间实现的问题,提出PSO-CNN模型即粒子群算法优化卷积神经网络模型,以改善仿真模型计算效率和普通神经网络模型计算精度的问题。对比PSO-CNN模型与CNN模型误差曲线与偏离度预测图,PSO-CNN模型的预测精度明显高于CNN卷积神经网络算法的预测精度。根据考虑流固耦合作用下闸门的一阶频率变化,采用全局随机灵敏度分析方法筛选出圆管型支臂的管外径、圆管型支臂管壁厚度和面板厚度作为模型主导参数。结合ANSYS平台opt分析模块零阶优化算法求得主导参数的优化结果,优化后闸门流固耦合后频率远离水流脉冲频率,使该弧形闸门具有良好动力性能。 展开更多
关键词 三角闸门 优化设计 pso-CNN模型 零阶算法
在线阅读 下载PDF
基于PSO-BP神经网络模型的浸胶竹束干燥过程含水率预测
15
作者 王晓曼 吕建雄 +5 位作者 李贤军 吴义强 李新功 郝晓峰 乔建政 徐康 《林业科学》 北大核心 2025年第5期187-198,共12页
【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测... 【目的】利用人工神经网络模型预测浸胶竹束干燥过程含水率变化,揭示干燥温度、干燥时间、铺装方式和初始含水率对浸胶竹束干燥过程含水率变化的影响规律,为浸胶竹束高质高效干燥提供参考依据。【方法】基于浸胶竹束干燥过程含水率实测数据,以干燥温度、干燥时间、铺装方式和初始含水率为输入变量,干燥过程含水率为输出变量,制作数据集。将数据集划分为训练集(308个测试数据,占总数据量的70%)、验证集(66个测试数据,占总数据量的15%)和测试集(66个测试数据,占总数据量的15%),采用粒子群优化算法(PSO)优化反向传播(BP)神经网络初始权重与阈值,构建PSO-BP神经网络预测模型,并进行验证分析。【结果】PSO-BP神经网络模型具有较强的预测能力,在模型测试集中,决定系数(R^(2))、均方误差(MSE)、平均绝对误差(MAE)和剩余预测残差(RPD)分别达0.98、1.27、3.73和7.96。相较BP神经网络,PSO-BP神经网络的R^(2)和RPD分别提高6.53%和110.2%,MSE和MAE分别降低54.0%和71.86%。模型验证表明,干燥温度和铺装方式是影响浸胶竹束干燥过程含水率变化的主要因素,二者对PSO-BP神经网络模型预测结果影响显著。干燥温度为60℃时,在4种不同铺装方式下PSO-BP神经网络模型展现出较好预测效果,其R^(2)均超过0.969且MSE均低于3;铺装层数为3时,在4种不同干燥温度下PSO-BP神经网络模型表现最佳,其R^(2)均超过0.99且MSE均低于2。干燥时间和浸胶竹束初始含水率对PSO-BP神经网络模型预测结果影响不显著。【结论】PSO-BP神经网络模型在浸胶竹束干燥过程含水率预测中表现出准确性,可有效解决传统BP神经网络预测误差大、收敛速度慢等问题,为浸胶竹束高质高效干燥提供技术支撑。 展开更多
关键词 浸胶竹束 干燥 含水率 粒子群优化算法 反向传播 神经网络
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究
16
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进pso-GWO算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于TCSPSO算法的机械臂运动时间最优轨迹规划
17
作者 许家伟 李磊 +3 位作者 汪建华 张雅君 覃杰伟 刘旭珍 《现代制造工程》 北大核心 2025年第3期69-76,83,共9页
目前,在船舶制造工业中,采用机械臂焊接作业已逐渐取代传统人工作业,为了提高机械臂的工作效率和稳定性,提出了一种基于终端交叉和导向的扰动粒子群优化(Terminal Crossover and Steering-based Particle Swarm Optimization,TCSPSO)算... 目前,在船舶制造工业中,采用机械臂焊接作业已逐渐取代传统人工作业,为了提高机械臂的工作效率和稳定性,提出了一种基于终端交叉和导向的扰动粒子群优化(Terminal Crossover and Steering-based Particle Swarm Optimization,TCSPSO)算法的机械臂运动时间最优轨迹规划方法。首先,构造5-7-5多项式插值函数,拟合机械臂关节空间中的运动轨迹,以机械臂运动时间最优为目标建立约束优化模型;然后,使用增广拉格朗日乘子法将约束优化问题转化为无约束优化问题,为了避免结果陷入局部最优,采用TCSPSO算法进行求解;最后,在MATLAB软件中进行仿真实验,得到了机械臂的最优运动时间和平滑的运动轨迹。结果表明,该方法可以有效地缩短机械臂的运动时间,保证了机械臂在运动过程中的稳定性。 展开更多
关键词 机械臂 轨迹规划 粒子群优化算法 多项式插值 增广拉格朗日乘子法
在线阅读 下载PDF
基于PSO-ChOA优化的轴流风机故障诊断模型
18
作者 吕亚楠 赵康 +1 位作者 马草原 郑璐 《机电工程》 北大核心 2025年第2期373-386,共14页
传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改... 传统的风机故障诊断技术依赖大量的历史数据,在参数优化和算法选择上存在早熟收敛问题,且在风机故障诊断过程中需要精确采集信号,但实际应用中受限于传感器安装条件,影响了数据的准确性和诊断的有效性。针对这些问题,提出了一种融合改进粒子群优化算法(PSO)与黑猩猩优化算法(ChOA)混合优化策略(PSO-ChOA)的VMD-CNN-Transformer模型,应用于轴流风机故障诊断。首先,通过仿真和实验获取了七种风机典型电气故障信号和三种离心风机轴承故障信号,并进行了预处理以满足算法训练要求;然后,使用PSO对ChOA的狩猎搜索阶段进行了优化,减少了人为设定参数对模型训练的影响,通过构建23个标准测试函数,分析了PSO-ChOA算法在收敛速度和全局优化上的优势;最后,利用变分模态分解(VMD)提取了故障特征,并利用卷积神经网络-Transformer(CNN-Transformer)模型进行了分类,采用实例分析了该模型在处理非线性和高维数据时的强大能力。研究结果表明:相较于传统算法,PSO-ChOA算法在收敛速度上的优势显著,能够更快地跳出局部最优,避免早熟收敛,同时保持较高的搜索精度,最终找到更接近全局最优的解;采用PSO-ChOA优化的VMD-CNN-Transformer模型在风机故障诊断任务中达到了97.76%的准确率,较VMD-CNN-Transformer方法,准确率提升了6.64%;PSO-ChOA在参数优化领域的应用潜力,为工业设备故障诊断研究提供了新的视角。 展开更多
关键词 离心式风机 复杂非线性信号 粒子群优化 黑猩猩优化算法 卷积神经网络-Transformer模型 变分模态分解
在线阅读 下载PDF
基于改进PSO-BP神经网络的Ni-TiC复合镀层工艺参数优化方法
19
作者 李学威 王兆浩 《电镀与精饰》 北大核心 2025年第8期76-82,共7页
在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm ... 在Ni-TiC复合镀层的制备过程中,由于受到参数非线性波动以及多参数间复杂作用关系的影响,其镀层制备效果不佳。为达到理想的镀层效果,本次借助脉冲负荷电沉积法制备Ni-TiC复合镀层环境,开展基于改进粒子群优化-反向传播(Particle Swarm Optimization Backpropagation,PSO-BP)神经网络的Ni-TiC复合镀层工艺参数优化方法研究。先对Ni-TiC复合镀层工艺进行分析,探讨TiC粒子浓度、电流密度以及pH值三种工艺参数的影响,然后以此为基础,设计正交试验,开展对Ni-TiC复合镀层工艺参数的初步优化,最后以得到的正交试验结果为输入,采用BP神经网络完成Ni-TiC复合镀层工艺参数优化模型的构建与训练设计,应用改进PSO算法完成BP神经网络模型参数寻优,实现Ni-TiC复合镀层工艺参数优化。实验结果表明:应用该方法,可以实现Ni-TiC复合镀层的制备工艺参数优化,采用优化后的工艺制备的复合镀层的耐腐蚀能力更强。 展开更多
关键词 改进pso算法 BP神经网络 Ni-TiC复合镀层 工艺参数优化 正交实验 脉冲负荷电沉积方法
在线阅读 下载PDF
基于PSO+SOM神经网络的无人机装备故障智能诊断研究
20
作者 沈延安 陈强 杨克泉 《火力与指挥控制》 北大核心 2025年第1期152-159,168,共9页
针对当前无人机装备故障人工诊断效率低、智能诊断方法少、故障识别正确率低以及SOM神经网络收敛速度慢等问题,提出一种基于PSO+SOM神经网络的故障智能诊断方法。通过改进PSO算法优化SOM神经网络和对比PSO、GA、ACO对SOM神经网络的改进... 针对当前无人机装备故障人工诊断效率低、智能诊断方法少、故障识别正确率低以及SOM神经网络收敛速度慢等问题,提出一种基于PSO+SOM神经网络的故障智能诊断方法。通过改进PSO算法优化SOM神经网络和对比PSO、GA、ACO对SOM神经网络的改进效果,以及比较LVQ、BP、传统SOM、PSO+SOM神经网络的故障诊断效果,结果表明PSO+SOM神经网络的故障诊断模型具有适度值小、判别时间短、迭代次数少、准确率高、收敛速度快的优点,为实现无人机装备故障智能诊断提供一种高效的方法。 展开更多
关键词 无人机 SOM神经网络 pso算法 智能化 故障诊断
在线阅读 下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部