Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha...Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.展开更多
业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据...业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据历史事件日志中的轨迹提取轨迹前缀,构造带拟合情况标记的数据集;其次,使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示;最后,使用轻量化CNN模型构建合规性检查分类器,完成在线业务流程合规性检查,有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验,结果表明,该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升,且与传统BERT+CNN相比,所提方法的准确率最高可提升2.61%。展开更多
基金Projects(11661069,61763041) supported by the National Natural Science Foundation of ChinaProject(IRT_15R40) supported by Changjiang Scholars and Innovative Research Team in University,ChinaProject(2017TS045) supported by the Fundamental Research Funds for the Central Universities,China
文摘Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.
文摘业务流程合规性检查可以帮助企业及早发现潜在问题,保证业务流程的正常运行和安全性。提出一种基于改进BERT(Bidirectional Encoder Representations from Transformers)和轻量化卷积神经网络(CNN)的业务流程合规性检查方法。首先,根据历史事件日志中的轨迹提取轨迹前缀,构造带拟合情况标记的数据集;其次,使用融合相对上下文关系的BERT模型完成轨迹特征向量的表示;最后,使用轻量化CNN模型构建合规性检查分类器,完成在线业务流程合规性检查,有效提高合规性检查的准确率。在5个真实事件日志数据集上进行实验,结果表明,该方法相比Word2Vec+CNN模型、Transformer模型、BERT分类模型在准确率方面有较大提升,且与传统BERT+CNN相比,所提方法的准确率最高可提升2.61%。