期刊文献+
共找到929篇文章
< 1 2 47 >
每页显示 20 50 100
Low-Light Image Enhancement Model Based on Retinex Theory
1
作者 SHANG Cheng SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第5期14-20,57,共8页
Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevita... Low-light image enhancement is one of the most active research areas in the field of computer vision in recent years.In the low-light image enhancement process,loss of image details and increase in noise occur inevitably,influencing the quality of enhanced images.To alleviate this problem,a low-light image enhancement model called RetinexNet model based on Retinex theory was proposed in this study.The model was composed of an image decomposition module and a brightness enhancement module.In the decomposition module,a convolutional block attention module(CBAM)was incorporated to enhance feature representation capacity of the network,focusing on crucial features and suppressing irrelevant ones.A multifeature fusion denoising module was designed within the brightness enhancement module,circumventing the issue of feature loss during downsampling.The proposed model outperforms the existing algorithms in terms of PSNR and SSIM metrics on the publicly available datasets LOL and MIT-Adobe FiveK,as well as gives superior results in terms of NIQE metrics on the publicly available dataset LIME. 展开更多
关键词 Low-light image enhancement Retinex model Noise suppression feature fusion
在线阅读 下载PDF
Underwater Image Enhancement Based on Multi-scale Adversarial Network
2
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
在线阅读 下载PDF
基于深度学习的低光照图像增强研究综述 被引量:5
3
作者 孙福艳 吕准 吕宗旺 《计算机应用研究》 北大核心 2025年第1期19-27,共9页
低光照图像增强的目的是优化在光线不足的环境中捕获的图像,提升其亮度和对比度。目前,深度学习在低光照图像增强领域已成为主要方法,因此,有必要对基于深度学习的方法进行综述。首先,将传统低光照图像增强方法进行分类,并分析与总结其... 低光照图像增强的目的是优化在光线不足的环境中捕获的图像,提升其亮度和对比度。目前,深度学习在低光照图像增强领域已成为主要方法,因此,有必要对基于深度学习的方法进行综述。首先,将传统低光照图像增强方法进行分类,并分析与总结其优缺点。接着,重点介绍基于深度学习的方法,将其分为有监督和无监督两大类,分别总结其优缺点,随后总结应用在深度学习下的损失函数。其次,对常用的数据集和评价指标进行简要总结,使用信息熵对传统方法进行量化比较,采用峰值信噪比和结构相似性对基于深度学习的方法进行客观评价。最后,总结目前方法存在的不足,并对未来的研究方向进行展望。 展开更多
关键词 低光照图像增强 深度学习 有监督 特征提取 无监督
在线阅读 下载PDF
多尺度特征提取与融合的红外图像增强算法 被引量:6
4
作者 李牧 张一朗 柯熙政 《红外与激光工程》 北大核心 2025年第2期240-253,共14页
针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征... 针对传统的特征融合算法多从单一的尺度上抽取图像的特征,并且在红外图像亮度增强过程中可能导致局部特征信息的丢失与退化而引起红外图像细节分辨率不高的问题,提出了多尺度特征提取与融合的红外图像增强算法,主要由多尺度自适应特征提取模块、亮度增强迭代函数以及特征融合和图像重建模块构成。首先,提出的多尺度自适应特征提取融合模块保存和融合了来自不同卷积层特征的多尺度信息;然后,改进的亮度增强迭代函数使用了融合特征作为逐像素参数,用于红外图像亮度增强;最后,通过提出的特征融合和图像重建模块,增强了特征在网络中的传播能力,并保持了局部信息的完整性。实验结果表明:多尺度特征提取与融合的红外图像增强算法与其它表现较好的网络相比,峰值信噪比、余弦相似度以及信息熵分别提高了3.7%、1.3%、1.6%。且在测试数据集上根据引用的火灾隐患检测算法判断是否存在火灾隐患进行早期火灾检测,其准确率为97.86%,说明了提出的多尺度特征提取与融合的红外图像增强算法的有效性与可行性。 展开更多
关键词 红外图像 图像增强 深度学习 特征融合 注意力机制
在线阅读 下载PDF
边缘感知增强的煤矿井下视觉SLAM方法 被引量:2
5
作者 牟琦 梁鑫 +2 位作者 郭媛婕 王煜豪 李占利 《煤田地质与勘探》 北大核心 2025年第3期231-242,共12页
【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘... 【目的】煤矿井下普遍存在低照度、弱纹理和结构化的特征退化场景,导致视觉SLAM(visual simultaneous localization and mapping)系统面临有效特征不足或误匹配率高的问题,严重制约了其定位的准确性和鲁棒性。【方法】提出一种基于边缘感知增强的视觉SLAM方法。首先,构建了边缘感知约束的低光图像增强模块。通过自适应尺度的梯度域引导滤波器优化Retinex算法,以获得纹理清晰光照均匀的图像,从而显著提升了在低光照和不均匀光照条件下特征提取性能。其次,在视觉里程计中构建了边缘感知增强的特征提取和匹配模块,通过点线特征融合策略有效增强了弱纹理和结构化场景中特征的可检测性和匹配准确性。具体使用边缘绘制线特征提取算法(edge drawing lines,EDLines)提取线特征,定向FAST和旋转BRIEF点特征提取算法(oriented fast and rotated brief,ORB)提取点特征,并利用基于网格运动统计(grid-based motion statistics,GMS)和比值测试匹配算法进行精确匹配。最后,将该方法与ORB-SLAM2、ORB-SLAM3在TUM数据集和煤矿井下实景数据集上进行了全面实验验证,涵盖图像增强、特征匹配和定位等多个环节。【结果和结论】结果表明:(1)在TUM数据集上的测试结果显示,所提方法与ORB-SLAM2相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了4%~38.46%、8.62%~50%;与ORB-SLAM3相比,绝对轨迹误差、相对轨迹误差的均方根误差分别降低了0~61.68%、3.63%~47.05%。(2)在煤矿井下实景实验中,所提方法的定位轨迹更接近于相机运动参考轨迹。(3)有效提高了视觉SLAM在煤矿井下特征退化场景中的准确性和鲁棒性,为视觉SLAM技术在煤矿井下的应用提供了技术解决方案。研究面向井下特征退化场景的视觉SLAM方法,对于推动煤矿井下移动式装备机器人化具有重要意义。 展开更多
关键词 视觉SLAM 特征退化 边缘感知 图像增强 点线特征融合 TUM数据集
在线阅读 下载PDF
SDENet:基于多尺度注意力质量感知的合成缺陷数据评价网络 被引量:2
6
作者 卢洋 陈林慧 +1 位作者 姜晓恒 徐明亮 《图学学报》 北大核心 2025年第1期94-103,共10页
通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问... 通过对数据扩增方式合成的缺陷数据进行质量评估,有助于实现缺陷数据高质量扩充,进而缓解缺陷数据不足导致的检测模型性能不佳问题。针对现有质量评价算法在评估合成缺陷数据质量时更关注数据的失真特性而忽略了对数据缺陷属性考量的问题,提出一种基于注意力特征增强(AFE)和多尺度注意力质量感知(MAQP)的模型SDENet,综合考虑数据的失真特性和缺陷属性进行质量评价。首先,AFE通过双分支池化操作提高模型对不同尺寸、位置缺陷的泛化能力,并结合注意力机制增强模型对特征的表达。其次,MAQP对AFE增强后的特征进行向量化与融合处理,以更好地感知合成缺陷数据质量。最后,对融合后的特征进行质量评估,得到最终的评估分数。在构建的合成道路裂缝缺陷数据集上进行实验,结果表明,SDENet模型在RMSE,RMAE,PLCC和SROCC指标上均取得最优结果,比次优模型依次提升10.7%,5.0%,1.8%和1.8%,验证了模型的有效性。在失真数据集TID2013上,SDENet模型也取得较有竞争的结果,在PLCC和SROCC指标上依次达到0.902和0.876。 展开更多
关键词 注意力机制 特征增强 特征融合 合成缺陷数据 质量评价
在线阅读 下载PDF
基于特征增强的双重注意力去雾网络 被引量:2
7
作者 陈海秀 黄仔洁 +5 位作者 陆康 陆成 何珊珊 房威志 卢海涛 陈子昂 《电光与控制》 北大核心 2025年第1期15-20,67,共7页
针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB... 针对现有去雾方法处理的图像细节模糊和色彩偏差等问题,提出了一种基于特征增强的双重注意力去雾网络。该网络采用编码器-解码器结构,设计了一个双重注意力特征增强模块,其中,利用Ghost模块替代非线性卷积,实现模型轻量化处理,通过RFB充分融合不同尺度的特征,实现均匀去雾,引入双重注意力实现信息跨通道与空间交互,保证模型性能和抑制噪声特征。使用RESIDE数据集对网络进行训练和测试。实验结果表明,所提算法在主观视觉和客观评价指标上均有优异表现,能有效地提升网络的特征提取能力,实现对不同场景雾图的色彩恢复,增强图像的对比度和清晰度。 展开更多
关键词 图像去雾 特征增强 并行分支结构 多尺度映射 注意力机制
在线阅读 下载PDF
基于双目立体视觉的多分辨率图像匹配方法研究 被引量:1
8
作者 刘华春 吴广文 闫静莉 《现代电子技术》 北大核心 2025年第1期29-32,共4页
在双目立体视觉系统中,面对复杂场景时噪声会损害图像特征,增加提取难度,导致匹配精度和鲁棒性下降。因此,文中提出基于双目立体视觉的多分辨率图像匹配方法,旨在从不同尺度图像中有效获取信息并实现高精度匹配。该方法利用双目立体视... 在双目立体视觉系统中,面对复杂场景时噪声会损害图像特征,增加提取难度,导致匹配精度和鲁棒性下降。因此,文中提出基于双目立体视觉的多分辨率图像匹配方法,旨在从不同尺度图像中有效获取信息并实现高精度匹配。该方法利用双目立体视觉模型的双目旋转相机扫描目标并进行成像,根据内、外空间标定提升双目旋转相机的位置精度,保证目标的多分辨率成像效果;将其输入金字塔立体匹配网络中,通过网络中的类金字塔多空洞卷积操作提取双目图像特征,在此基础上,基于可变卷积增强其纹理特征细节;结合细粒度特征和互注意力机制完成双目图像匹配。测试结果显示,空间标定后,左、右两个相机的成像误差最小值分别为0.6 Pixel和0.4 Pixel;匹配点坐标偏差均值和坐标偏差方差值分别低于0.012和0.011,匹配效果良好。 展开更多
关键词 双目立体视觉 多分辨率 图像匹配 空间标定 双目旋转相机 特征提取 特征增强 细粒度
在线阅读 下载PDF
任务自适应增强的人机特征解耦可分级压缩 被引量:1
9
作者 安平 沙莉娅 +2 位作者 吴颖 杨超 黄新彭 《信号处理》 北大核心 2025年第2期399-408,共10页
图像压缩作为一项关键技术,旨在传输过程中保留尽可能少的关键信息,同时使得压缩后的图像保持较好的质量。而随着计算机视觉的发展,图像的主要消费者不仅仅是人类而更多的是机器,因此探索一种能够同时面向人类视觉和机器视觉的图像压缩... 图像压缩作为一项关键技术,旨在传输过程中保留尽可能少的关键信息,同时使得压缩后的图像保持较好的质量。而随着计算机视觉的发展,图像的主要消费者不仅仅是人类而更多的是机器,因此探索一种能够同时面向人类视觉和机器视觉的图像压缩方法十分具有意义。然而,现有的基于学习的图像编码技术虽然已经在人眼感知质量上取得了显著性的进步,但由于信号保真度及语义保真度的方法在驱动目标上存在分歧,无法同时满足机器视觉和人眼的需求。因此,本文提出了任务自适应增强的特征解耦可分级压缩方法,旨在利用单一比特流来支持多种视觉任务,并根据需求进行图像的选择性重建或完全重建。具体而言,本方法将图像特征解耦为目标特征和背景特征分别进行压缩和重建,所得到的目标图像用于后续目标检测和语义分割任务,而高质量完整重建的图像供人眼观看。这样不仅在实现视觉任务时避免了重建完整图像,提高压缩效率,还能够满足人眼的不同需求。此外,为了解决因目标区域重要性差异而引起的任务性能不平衡问题,本方法还设计了可插拔的任务自适应单元,并将其嵌入在目标特征解码器中,从而可以根据具体任务需求调整特征以增强重建目标图像的分析性能,而无须重新训练整个网络。实验结果证明,该方法与其他编解码器相比,展现出了更优的任务性能和速率失真(RateDistortion)性能。 展开更多
关键词 图像压缩 人机协同 特征解耦 任务自适应增强
在线阅读 下载PDF
融合动态特征增强的遥感建筑物分割 被引量:1
10
作者 肖振久 田昊 +1 位作者 张杰浩 曲海成 《光电工程》 北大核心 2025年第3期12-24,共13页
针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积... 针对遥感地物建筑物图像目标尺度差异大、样本空间分布不均衡、地物边界模糊、场景区域跨度大所导致的分割效果不佳问题,本文提出一种融合动态特征增强高精度遥感建筑物分割算法。首先,构建New_GhostNetV2网络,利用自适应上下文感知卷积,增强算法对样本空间特征的捕捉能力。其次,采用Ghost Convolution结合跳跃连接和特征分支策略设计多层级信息增强模块,增强特征整合。随后引入级联注意力CGA(cascaded group attention),通过组内独立注意力计算,加强模型对多样化地物形态的适应性。最后,通过动态深度特征增强器构造特征融合模块,进一步加强模型捕获能力。在WHU数据集上实验结果表明:改进算法较基线模型F1-Score提高8.57%,mIoU提高12.48%,与其他主流语义分割模型相比,改进DeepLabv3+具有更好的分割精度。 展开更多
关键词 遥感图像 语义分割 特征增强 信息整合
在线阅读 下载PDF
基于角域重采样和特征强化的电机滚动轴承故障迁移诊断方法 被引量:1
11
作者 王攀攀 李兴宇 +1 位作者 张成 韩丽 《电工技术学报》 北大核心 2025年第12期3905-3916,共12页
为了降低模型对数据的依赖,实现电机滚动轴承故障从恒转速工况到变转速工况的单源域迁移诊断,提出一种基于角域重采样和特征强化的故障诊断方法。首先,对不同转速工况下的时域振动信号进行角域重采样,降低由转速变化引起的时频分布差异... 为了降低模型对数据的依赖,实现电机滚动轴承故障从恒转速工况到变转速工况的单源域迁移诊断,提出一种基于角域重采样和特征强化的故障诊断方法。首先,对不同转速工况下的时域振动信号进行角域重采样,降低由转速变化引起的时频分布差异;然后,以协方差损失作为样本特征间的相似性度量,并借助领域对抗网络的思想,扩大不同类别特征间的距离,达到特征强化的目的;最后,利用源域振动数据(恒转速)训练后的卷积神经网络对变转速工况下的故障进行辨识,实现滚动轴承故障的跨转速迁移诊断。实验结果表明,所提方法在完全不涉及目标域数据的情况下,仍能准确地进行故障分类,且其正确率高达97.29%,降低了模型对数据的依赖。 展开更多
关键词 电机轴承故障 迁移学习 卷积神经网络 角域重采样 特征强化
在线阅读 下载PDF
融合边缘特征与细节感知网络的YOLOv8s髋关节关键点检测算法 被引量:1
12
作者 吕佳 段训禄 陈欣 《光电工程》 北大核心 2025年第3期84-99,共16页
髋关节关键点的准确识别对于提高发育性髋关节发育不良诊断精度具有重要意义。然而,在儿童髋关节X射线图像中,关键点所在的骨骼区域通常对比度低和边缘模糊,导致边缘特征不明显。同时,在特征提取过程中,下采样操作会进一步弱化边缘信息... 髋关节关键点的准确识别对于提高发育性髋关节发育不良诊断精度具有重要意义。然而,在儿童髋关节X射线图像中,关键点所在的骨骼区域通常对比度低和边缘模糊,导致边缘特征不明显。同时,在特征提取过程中,下采样操作会进一步弱化边缘信息。此外,关键点邻域内的关键结构易受背景干扰,这些因素均限制了关键点的精确定位。为此,本文提出了一种融合边缘特征与细节感知网络的YOLOv8s髋关节关键点检测算法。该算法在网络中设计了边缘特征强化模块,以捕获关键点周围空间信息并增强其所在的边缘特征;同时,提出细节感知网络,对多层级特征进行融合与优化,增强对图像中细微结构的感知能力。本文使用重庆医科大学附属儿童医院影像科提供的髋关节X射线图像数据集进行实验,结果显示,关键点的平均定位误差和平均角度误差降低至4.2090pixel和1.4872°,相较于YOLOv8s降低了6.8%和9.9%,显著优于现有方法。实验证明,本文算法有效提升了关键点的检测精度,为临床诊断提供了重要参考。 展开更多
关键词 发育性髋关节发育不良 关键点检测 YOLOv8s 边缘特征强化 细节感知网络
在线阅读 下载PDF
时空特征强化与感知的视觉目标跟踪方法 被引量:1
13
作者 郭虎升 刘正琪 +1 位作者 刘艳杰 王文剑 《陕西师范大学学报(自然科学版)》 北大核心 2025年第1期60-70,共11页
多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object... 多数基于Transformer的目标跟踪模型提取的目标局部空间特征信息有限且时间特征利用不足,显著影响了目标跟踪模型在处理目标遮挡、形变或尺度变化等复杂场景下的性能。为此,提出一种时空特征强化与感知的视觉目标跟踪方法(visual object tracking method with spatial-temporal feature enhancement and perception,STFEP)。一方面,该方法使用Transformer进行搜索区域与时间上下文特征的提取与融合,以得到全局特征信息,通过设计的局部卷积神经网络,提取目标的局部特征信息,并与目标的全局特征信息相关联,进一步强化目标的特征表示。另一方面,提出了时空特征感知机制,对不同时刻的特征信息进行可靠性和必要性分析,构建动态模板以感知更丰富的时空信息,使模型适应目标及场景的复杂变化。在TrackingNet、GOT-10k、LaSOT、UAV123多个数据集上的实验结果表明,研究所提方法能够准确鲁棒的对目标进行跟踪,并在GOT-10k数据集上取得了最优的结果,AO、SR 0.5以及SR 0.75分别达到了73.7%、83.8%、70.6%。 展开更多
关键词 视觉目标跟踪 时空特征强化 全局-局部信息关联 时空特征感知 动态模板
在线阅读 下载PDF
融合注意力和上下文信息的遥感图像小目标检测算法 被引量:2
14
作者 刘赏 周煜炜 +2 位作者 代娆 董林芳 刘猛 《计算机应用》 北大核心 2025年第1期292-300,共9页
对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提... 对多尺度的遥感图像进行小目标检测时,基于深度学习的目标检测算法容易出现误检和漏检的情况。这是因为此类算法的特征提取模块进行了多次的下采样操作;而且未能根据不同类别、不同尺度的目标关注所需的上下文信息。为了解决该问题,提出一种融合注意力和上下文信息的遥感图像小目标检测算法ACM-YOLO(Attention-Context-Multiscale YOLO)。首先,应用细粒度的查询感知稀疏注意力以减少小目标特征信息的丢失,从而避免漏检;其次,设计局部上下文增强(LCE)函数以更好地关注不同类别的遥感目标所需的上下文信息,从而避免误检;最后,使用加权双向特征金字塔网络(BiFPN)强化特征融合模块对遥感图像小目标的多尺度特征融合能力,从而改善算法检测效果。在DOTA数据集和NWPU VHR-10数据集上进行对比实验和消融实验,以验证所提算法的有效性和泛化性。实验结果表明,在2个数据集上所提算法的平均精确率均值(mAP)分别达到了77.33%和96.12%,而相较于YOLOv5算法,召回率分别提升了10.00和7.50个百分点。可见,所提算法能有效提升mAP和召回率,减少误检和漏检。 展开更多
关键词 遥感图像 小目标检测 稀疏采样 局部上下文信息增强 多尺度特征融合
在线阅读 下载PDF
融合时序与全局上下文特征增强的弱监督动作定位 被引量:1
15
作者 党伟超 范英豪 +1 位作者 高改梅 刘春霞 《计算机应用》 北大核心 2025年第3期963-971,共9页
针对现有的弱监督动作定位研究中将视频片段视为单独动作实例独立处理带来的动作分类及定位不准确问题,提出一种融合时序与全局上下文特征增强的弱监督动作定位方法。首先,构建时序特征增强分支以利用膨胀卷积扩大感受野,并引入注意力... 针对现有的弱监督动作定位研究中将视频片段视为单独动作实例独立处理带来的动作分类及定位不准确问题,提出一种融合时序与全局上下文特征增强的弱监督动作定位方法。首先,构建时序特征增强分支以利用膨胀卷积扩大感受野,并引入注意力机制捕获视频片段间的时序依赖性;其次,设计基于高斯混合模型(GMM)的期望最大化(EM)算法捕获视频的上下文信息,同时利用二分游走传播进行全局上下文特征增强,生成高质量的时序类激活图(TCAM)作为伪标签在线监督时序特征增强分支;再次,通过动量更新网络得到体现视频间动作特征的跨视频字典;最后,利用跨视频对比学习提高动作分类的准确性。实验结果表明,交并比(IoU)取0.5时,所提方法在THUMOS'14和ActivityNet v1.3数据集上分别取得了42.0%和42.2%的平均精度均值(mAP),相较于CCKEE(Cross-video Contextual Knowledge Exploration and Exploitation)方法,在mAP分别提升了2.6与0.6个百分点,验证了所提方法的有效性。 展开更多
关键词 弱监督动作定位 时序类激活图 动量更新 伪标签监督 特征增强
在线阅读 下载PDF
基于MR-VOD的神农架林区野生动物视频检测 被引量:1
16
作者 眭海刚 魏天怡 +2 位作者 胡烈云 杨敬元 马国飞 《野生动物学报》 北大核心 2025年第1期1-13,共13页
红外相机视频是野生动物调查的主流研究方法之一,但在林区受设备角度、复杂环境与野生动物活动的随机性影响,极易出现检测中光流捕捉错误或简单语义难以识别的情况。针对此类问题,提出一种基于多帧关系网络特征增强的视频目标检测方法(m... 红外相机视频是野生动物调查的主流研究方法之一,但在林区受设备角度、复杂环境与野生动物活动的随机性影响,极易出现检测中光流捕捉错误或简单语义难以识别的情况。针对此类问题,提出一种基于多帧关系网络特征增强的视频目标检测方法(multi-relation video object detection,MR-VOD)。该算法在图像关系网络的基础上,综合考虑上下帧目标之间的关系,通过多阶段推理,实现对野生动物目标的准确检测。同时,以神农架林区野生动物红外相机视频为基础,构建相关野生动物视频目标检测数据样本集作为实验区。试验证明,改进后的算法检测性能有所提升,平均准确率达81.96%,比Faster R-CNN提高9.32个百分点,在川金丝猴(Rhinopithecus roxellana)的检测上提升30.79个百分点,并在多种复杂场景下测试表现良好,有效减少了错检漏检的情况。该算法的实现将为神农架野生动物智能监测云平台提供检测基础,同时为后续开展的野生动物保护、种群评估提供必要的技术支撑。 展开更多
关键词 关系网络 视频目标检测 野生动物 复杂环境 特征增强
在线阅读 下载PDF
多尺度反向校正增强和无损下采样的毫米波图像目标检测方法 被引量:1
17
作者 叶学义 韩卓 +2 位作者 蒋甜甜 王佳欣 陈华华 《电子测量与仪器学报》 北大核心 2025年第4期50-61,共12页
针对毫米波图像中隐匿目标局部信噪比低导致检测障碍的问题,提出了一种基于多尺度反向校正增强和无损下采样的检测方法。首先设计了一种多尺度反向校正特征增强模块,在提取多尺度特征的多卷积核Res2Net上融合反向校正操作,实现大感受野... 针对毫米波图像中隐匿目标局部信噪比低导致检测障碍的问题,提出了一种基于多尺度反向校正增强和无损下采样的检测方法。首先设计了一种多尺度反向校正特征增强模块,在提取多尺度特征的多卷积核Res2Net上融合反向校正操作,实现大感受野区域对区域内相关小感受野区域卷积计算的反向校正,使得深度模型不仅能够获取更细粒度的特征,而且使宏观判别性表示贯穿多个尺度的特征信息;其次,利用非跨步卷积层的SPD-Conv实现无损下采样,缓解卷积下采样导致的信息丢失;最后,采用K-means++聚类算法生成适合隐匿目标检测任务的新锚框。实验在YOLO系列中选择了各方面性能都适中的YOLOv5s作为基础框架,针对现有的两种毫米波图像数据集(阵列图像集和线扫图像集)平均精度均值(mAP)mAP@0.5分别达到了96.21%和97.97%,相较于原版YOLOv5s以及YOLO其他系列等性能有显著提升。实验结果表明,该方法在不明显增加参数量和推理时间的同时,能够有效提升深度模型的检测性能。 展开更多
关键词 隐匿目标检测 主动毫米波图像 多尺度反向校正特征增强 无损下采样 K-means++
在线阅读 下载PDF
空间定位与特征泛化增强的铁路异物跟踪检测 被引量:2
18
作者 陈永 王镇 周方春 《北京航空航天大学学报》 北大核心 2025年第1期9-18,共10页
针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;... 针对现有深度学习异物跟踪检测算法易受复杂环境、目标遮挡等影响,导致出现漏检及检测精度低等问题,提出了一种空间定位与特征泛化增强的铁路异物跟踪检测算法。提出改进多尺度级联GhostNet特征提取网络,提升对红外目标的特征提取能力;利用异物空间位置定位与泛化形态信息,设计空间定位与特征泛化增强模块,增强对复杂场景下位置移动与跟踪轨迹变化目标的检测精度;构建金字塔预测网络,得到红外铁路异物的检测锚框、类别及置信度信息;通过改进类别和置信度显示的DeepSORT跟踪算法,结合卡尔曼滤波与匈牙利算法实现红外弱光环境下铁路异物跟踪检测。实验结果表明:所提算法对铁路异物的跟踪检测精确度达到83.3%,平均检测速度为11.3帧/s;与比较算法相比,所提算法检测精度更高,对红外弱光场景下铁路异物跟踪检测具有较好的性能。 展开更多
关键词 机器视觉 异物检测 红外弱光 空间定位 特征泛化增强 目标跟踪
在线阅读 下载PDF
基于细节增强和多颜色空间学习的联合监督水下图像增强算法
19
作者 胡锐 程家亮 胡伏原 《现代电子技术》 北大核心 2025年第1期23-28,共6页
由于水下特殊的成像环境,水下图像往往具有严重的色偏雾化等现象。因此文中根据水下光学成像模型设计了一种新的增强算法,即基于细节增强和多颜色空间学习的无监督水下图像增强算法(UUIE-DEMCSL)。该算法设计了一种基于多颜色空间的增... 由于水下特殊的成像环境,水下图像往往具有严重的色偏雾化等现象。因此文中根据水下光学成像模型设计了一种新的增强算法,即基于细节增强和多颜色空间学习的无监督水下图像增强算法(UUIE-DEMCSL)。该算法设计了一种基于多颜色空间的增强网络,将输入转换为多个颜色空间(HSV、RGB、LAB)进行特征提取,并将提取到的特征融合,使得网络能学习到更多的图像特征信息,从而对输入图像进行更为精确的增强。最后,UUIE-DEMCSL根据水下光学成像模型和联合监督学习框架进行设计,使其更适合水下图像增强任务的应用场景。在不同数据集上大量的实验结果表明,文中提出的UUIE-DEMCSL算法能生成视觉质量良好的水下增强图像,且各项指标具有显著的优势。 展开更多
关键词 水下图像增强 多颜色空间学习 无监督学习 细节增强 特征提取 特征融合
在线阅读 下载PDF
基于EIMYOLO的高分遥感图像目标检测
20
作者 曹峰 曾科文 +2 位作者 李德玉 罗喜召 陶重犇 《电子学报》 北大核心 2025年第7期2266-2278,共13页
高分遥感图像目标检测是遥感信息智能化处理的研究热点,具有广泛的应用背景和重要的应用价值.相比于自然图像,高分遥感图像目标检测面临目标朝向任意、尺度变化大、背景复杂易受干扰以及排列密集度高等诸多难点.为了进一步提升高分遥感... 高分遥感图像目标检测是遥感信息智能化处理的研究热点,具有广泛的应用背景和重要的应用价值.相比于自然图像,高分遥感图像目标检测面临目标朝向任意、尺度变化大、背景复杂易受干扰以及排列密集度高等诸多难点.为了进一步提升高分遥感图像目标检测算法的性能,本文从特征融合与特征增强的角度出发,以YOLO11为基准算法提出一种旋转框遥感图像目标检测算法EIMYOLO,并设计了边缘特征增强、多尺度特征增强提取器和多尺度注意力机制动态融合3个即插即用的模块.边缘特征增强模块通过提取目标的边缘特征,提高了算法对旋转目标的方向敏感度以及复杂背景下的特征提取能力.多尺度特征增强提取器和多尺度注意力机制动态融合模块,分别从层内特征增强及层间特征融合角度出发,提高了算法对密集目标和细长目标的检测能力.为了验证本文算法的性能,在公共遥感数据集HRSC2016和DIOR-R上进行了实验.结果表明,所提算法的平均检测准精度分别达到了90.80%和72.40%,优于基准算法和对比算法. 展开更多
关键词 高分遥感图像 深度学习 特征融合 特征增强 注意力机制
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部