期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
基于混合编码和掩膜空间调制的图像补全算法
1
作者 冼进 徐小茹 +1 位作者 冼允廷 冼楚华 《华南理工大学学报(自然科学版)》 北大核心 2025年第3期31-39,共9页
图像补全是指对图像缺失区域进行内容填充,是计算机视觉和图像处理研究的重要问题之一。当前图像补全算法的研究已经取得了很大的进展,但如果图像中的场景比较复杂且存在大面积的缺失区域时,现有算法由于缺乏有效的网络结构来捕捉图像... 图像补全是指对图像缺失区域进行内容填充,是计算机视觉和图像处理研究的重要问题之一。当前图像补全算法的研究已经取得了很大的进展,但如果图像中的场景比较复杂且存在大面积的缺失区域时,现有算法由于缺乏有效的网络结构来捕捉图像的长距离依赖和高级语义信息,仍然较难生成高质量的完整图像。针对大范围缺失的图像补全问题,为扩大图像补全网络有限的感受野,有效地获取图像可见区域的全局信息,同时充分利用图像可见区域的有效信息,该文提出了一种基于混合编码和掩膜空间调制的图像补全算法。该算法首先通过混合编码网络对图像可见区域进行局部和全局信息的特征提取;然后采用掩膜空间调制模块,根据缺失面积的大小动态调整在生成缺失区域时的多样性;最后基于StyleGAN2的方法生成完整图像。实验结果表明,该文提出的算法能够有效地处理大范围缺失的图像,可生成具有多样性的高质量图像,并且能应用在视觉显著性模型的数据增强上。 展开更多
关键词 图像补全 图像增强 混合编码 掩膜空间调制
在线阅读 下载PDF
基于二次调制双通道同步的高分辨力绝对式时栅角位移传感器
2
作者 杨继森 秦小东 +2 位作者 桂强 徐杰 刘家红 《仪器仪表学报》 北大核心 2025年第2期314-324,共11页
为了在不增加传感器尺寸的前提下,提高传感器的分辨力和测量精度,并实现绝对角位移测量,以满足空间受限的工业场合应用需求,故提出了一种基于二次调制双通道同步的高分辨力绝对式时栅角位移传感器设计方案。该传感器主要由定尺、动尺和... 为了在不增加传感器尺寸的前提下,提高传感器的分辨力和测量精度,并实现绝对角位移测量,以满足空间受限的工业场合应用需求,故提出了一种基于二次调制双通道同步的高分辨力绝对式时栅角位移传感器设计方案。该传感器主要由定尺、动尺和驱动电路板组成,定尺上设置有精机码道的两路激励线圈、粗机码道的两路感应线圈、电磁耦合线圈的次级,动尺上设置有精机码道的两路感应线圈、粗机码道的两路激励线圈、电磁耦合线圈的初级,驱动电路板上设置有一组驱动信号发生电路、两组感应信号处理电路、FPGA核心电路。将动尺上精机码道的两路感应线圈与粗机码道的两路激励线圈串联在一起实现二次调制,当传感器精机码道的激励线圈上电工作时,精机码道的两路感应线圈上所感应的两路角位移电信号被调制到粗机码道上,从而实现了粗机码道与精机码道分辨力相加的目的,以此提升传感器的分辨力。同时将一路精机感应信号通过电磁耦合线圈回传到定尺端作为整周定位信号。通过FPGA同步解算这两路信号,实现绝对角位移测量。采用PCB工艺制作了外径为140 mm的传感器样机。实验结果表明,该传感器只需要一组驱动电路就能够实现绝对角位移测量,且分辨力从0.38″提升到0.2″,提高了47%,原始测量误差范围从±34.14″降低到±16.06″,降低了53%。 展开更多
关键词 角位移传感器 绝对式 二次调制 同步测量
在线阅读 下载PDF
多尺度融合增强与注意力机制结合的图像语义分割
3
作者 刘书刚 杜昊东 王洪涛 《计算机应用与软件》 北大核心 2025年第6期225-233,278,共10页
针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特... 针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特征信息进行融合,在解码器末端使用改进的轻量化卷积注意力模块,使得对于物体边界分割更加充分。通过在Pascal VOC2007和Cityscapes数据集上进行实验验证,结果表明该方法较原有网络的精确度有显著的提高。 展开更多
关键词 语义分割 特征融合增强 注意力模块 编码器 上采样
在线阅读 下载PDF
一种自适应残差卷积自编码网络及其故障诊断应用
4
作者 潘天成 陈龙 +1 位作者 蒲春雷 陈志强 《机电工程》 北大核心 2025年第3期529-538,共10页
针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数... 针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数化修正线性单元(APReLU),建立了自适应残差模块(ARM),ARM可以对相似的输入特征进行自适应非线性变换,避免了特征的错误识别;其次,在CAE中嵌入多级ARM,构建了ARCAE,增加了CAE的深度,提取了更具鉴别性的深层次特征,同时有效防止了网络加深而造成的性能退化;最后,基于ARCAE建立了针对一维信号的故障诊断新方法,将其应用于无监督滚动轴承故障诊断中,并通过两个不同类型的实验,对上述方法的有效性进行了验证。研究结果表明:在恒定转速工况下,ARCAE的诊断准确率最高,平均准确率达到了97.05%,且标准差仅为0.007,远低于其他几种传统CAE网络;在变转速工况下,ARCAE模型诊断准确率仍然是最高的,平均准确率达到了93.25%,由此说明ARCAE具有较高的特征提取能力和分类准确率;此外,变转速工况下,由于转速变化导致不同状态的振动信号特征差异变大,诊断难度加大,但与其他几种传统CAE网络相比,ARCAE诊断准确率下降最少,仅为5.37%,说明ARCAE具有更强的鲁棒性和稳定性。 展开更多
关键词 滚动轴承 自适应残差卷积自编码网络 自适应参数化修正线性单元 自适应残差模块 无监督故障诊断 特征提取
在线阅读 下载PDF
基于多尺度胶囊Swin Transformer的SAR图像目标识别方法 被引量:1
5
作者 侯宇超 王洁 +4 位作者 李洪涛 郝岩 段晓旗 黄凯文 田有亮 《通信学报》 北大核心 2025年第3期274-290,共17页
通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transfor... 通过协同胶囊单元的语义特征编码和Swin Transformer的上下文特征图建模优势相结合,提出了一种多尺度胶囊Swin Transformer网络(MSCSTN),将胶囊编码和Swin Transformer联合应用于SAR图像目标识别。该网络集成3个并行的胶囊Swin Transformer编码结构,融合后对输入图像进行分类。每个结构通过基于膨胀卷积切片划分的胶囊令牌编码器和三维胶囊Swin Transformer模块构建,能捕获更深层次、更广泛的语义特征。在运动和静止目标的获取与识别(MSTAR)数据集及FUSAR-Ship数据集上的实验结果表明,MSCSTN在各种测试条件下均优于其他方法。结果表明,MSCSTN展现了良好的识别性能、泛化能力和应用潜力。 展开更多
关键词 膨胀卷积切片分区 胶囊令牌编码器 三维胶囊Swin Transformer模块 多尺度胶囊Swin Transformer网络 SAR图像目标识别
在线阅读 下载PDF
基于改进Segformer的光伏组件分割算法
6
作者 曹冠华 党建武 杨景玉 《太阳能学报》 北大核心 2025年第2期425-432,共8页
针对光伏图像中光伏组件与复杂背景的边界特征模糊、难以区分的问题,提出一种基于Segformer的改进算法。在编码阶段,引入全新设计的block5模块用来解析更高级的语义信息;在解码阶段,引入LPCB(边界强化)模型用来识别更精确的边界特征,最... 针对光伏图像中光伏组件与复杂背景的边界特征模糊、难以区分的问题,提出一种基于Segformer的改进算法。在编码阶段,引入全新设计的block5模块用来解析更高级的语义信息;在解码阶段,引入LPCB(边界强化)模型用来识别更精确的边界特征,最终得到精确的分割结果。实验结果表明:改进后的光伏组件分割算法在光伏组件图像数据集上的分割效果优于经典的主流分割算法,可以对光伏组件区域进行有效分割。 展开更多
关键词 光伏组件 Segformer 编码 解码 边界特征
在线阅读 下载PDF
基于嵌入式技术的光通信信号智能处理系统 被引量:1
7
作者 张萌 谷栎娜 +1 位作者 薛少童 张通 《激光杂志》 北大核心 2025年第2期168-173,共6页
为实现信号快速传输,提高光通信系统稳定性,设计基于嵌入式技术的光通信信号智能处理系统。构建光通信信号智能处理系统框架,将采DSP处理模块嵌入到光通信系统中,以LED阵列作为光源,获得光通信原始信号,在DSP中完成RS编码、截断的PPM调... 为实现信号快速传输,提高光通信系统稳定性,设计基于嵌入式技术的光通信信号智能处理系统。构建光通信信号智能处理系统框架,将采DSP处理模块嵌入到光通信系统中,以LED阵列作为光源,获得光通信原始信号,在DSP中完成RS编码、截断的PPM调制,将其作用到LED上实现光通信信号的发送,经过信道传输后,通过凸透镜聚集传送光束并由探测器阵列接收光信号,采用Berlekamp-Massey算法完成信号解译,利用由高带宽增益积运算放大器、全差分运算放电器、限幅放大器构成两极信号处理电路完成原始输入信号的复原。实验结果表明:该系统可保证5 km通信距离下光通信信号的稳定传输,随着通信距离的增长,误码率呈小幅度变大,2.5 km通信距离内,误码率为0,可实现输入信号的准确恢复,收发端信噪比不低于74 dB,信号处理性能突出。 展开更多
关键词 嵌入式技术 光通信 DSP LED阵列 RS编码 PPM调制
在线阅读 下载PDF
基于多粒度增强和答案验证的法律文书阅读理解模型
8
作者 王婧蕾 徐建 《计算机应用研究》 北大核心 2025年第3期700-707,共8页
近年来法律文书阅读理解逐渐成为一个研究热点,它要求模型能够利用有限的数据完成答案分类以及证据和答案的提取,然而现有模型编码粒度单一,且问题和法律文书之间仍缺乏充分的交互。为了解决上述问题,提出了一种基于多粒度增强和答案验... 近年来法律文书阅读理解逐渐成为一个研究热点,它要求模型能够利用有限的数据完成答案分类以及证据和答案的提取,然而现有模型编码粒度单一,且问题和法律文书之间仍缺乏充分的交互。为了解决上述问题,提出了一种基于多粒度增强和答案验证的法律文书阅读理解模型。该模型首先使用多粒度编码模块,以字符、词语和序列三种粒度来捕捉输入文本中多层次的信息,提高模型提取信息的能力;然后引入基于问题和证据的注意力,增强问题和法律文书之间的交互,深入挖掘答案分类的线索信息;最后受到人类阅读过程的启发,该模型采用答案验证机制结合局部和全局信息来预测答案。在中文法律阅读理解数据集CAIL2019、CAIL2020和CAIL2020-Enhanced以及英文数据集HotpotQA上的实验结果表明,所提方法的joint F 1分别为76.48%、64.16%、70.82%和69.39%,优于基线模型。 展开更多
关键词 法律文书阅读理解 多粒度编码模块 注意力机制 答案验证机制
在线阅读 下载PDF
基于样本优化与深度特征提取的滑坡易发性评价
9
作者 徐金鸿 李清泉 +1 位作者 韦春桃 赵芹 《水土保持通报》 北大核心 2025年第2期190-200,210,共12页
[目的]探究滑坡易发性评价中准确的非滑坡样本采样方法和特征提取优异的评价模型,为区域滑坡防控工作提供理论支持和科学指导。[方法]在缓冲区采样策略的基础上提出了一种基于卷积自编码器(convolutional auto-encoder,CAE)的非滑坡样... [目的]探究滑坡易发性评价中准确的非滑坡样本采样方法和特征提取优异的评价模型,为区域滑坡防控工作提供理论支持和科学指导。[方法]在缓冲区采样策略的基础上提出了一种基于卷积自编码器(convolutional auto-encoder,CAE)的非滑坡样本优化方法。该方法通过学习滑坡样本的特征,利用重构误差筛选和优化非滑坡样本。在评价模型方面,引入卷积注意力模块(convolutional block attention module,CBAM)到残差网络(ResNet)中,构建ResNet-CBAM滑坡易发性评价模型,以捕捉更深层次、更复杂且更具代表性的特征。试验以三峡库区重庆市万州区为研究区域,选取高程等12个影响因子,采用SVM,DNN,CNN和ResNet-CBAM 4种模型,对缓冲区采样和基于CAE优化采样的评价精度和结果进行对比分析。[结果]在相同评价模型下,基于CAE优化的非滑坡样本采样策略具有更高的可靠性与准确性;在相同采样策略下,ResNet-CBAM模型在准确率、精确率、召回率、F_(1)分数和AUC等指标上均优于其他模型;各模型的评价结果具有相似性,高易发区和极高易发区主要分布在长江沿岸等植被覆盖度低、人类活动频繁的区域,使用了基于CAE优化采样的ResNet-CBAM模型表现出更优的预测效果,更适宜于该区域的滑坡易发性评价研究。[结论]万州区滑坡易发性指数较高,区域内存在大量潜在滑坡风险区。基于CAE优化的非滑坡样本采样策略和ResNet-CBAM评价模型能有效提高滑坡易发性评价的精度。 展开更多
关键词 滑坡易发性评价 非滑坡样本 卷积自编码器 残差网络 卷积注意力模块
在线阅读 下载PDF
基于压缩图像与YOLOv5模型的架空输电线路缺陷检测技术 被引量:1
10
作者 刘敏 姜亮 +2 位作者 田杨阳 张璐 陈岑 《沈阳工业大学学报》 北大核心 2025年第2期152-159,共8页
【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,... 【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,无论何种方式都需要处理大量可视化、红外或者紫外照片。但由于输电线路的特殊性,架设条件涉及多种环境,其巡检图像背景通常较为复杂,采用人工复核审查的方式精度较高,但对经验依赖较大且效率极低。如何快速、准确地识别架空线路巡检图片是架空输电线路缺陷识别的关键。传统输电线路巡检图片识别方法在复杂背景的干扰下,容易出现缺陷识别精确度不高的问题。【方法】为提高架空输电线路巡检图像复杂背景下的检测准确率,提出了一种兼顾识别效率和准确性的缺陷检测方法。基于压缩图像技术并结合YOLOv5模型,设计了一种基于稀疏卷积的非对称特征聚合压缩算法,将原始图像通过编码减少图像存储所需空间以便于存储和传输,经过信息通道传输到解密器后,再将压缩图像进行解码复原以提升局部集合特征的学习效率。同时,通过融入通道空间注意力模块从特征图中得到注意力通道权重矩阵和空间权重矩阵,并通过权重矩阵判断特征图区域的重要程度,完成对YOLOv5模型处理效率的提升。【结果】将压缩恢复后的图像输入改进YOLOv5模型中,利用通道注意力模块(CAM)和空间注意力模块(SAM)分别对图像进行通道与空间上的注意力数据处理,通过全局平均池化和最大池化处理增强目标区域的特征,并引入空间注意力模块增强通道注意力对特征位置信息的关注,以检测出存在缺陷的设备,并通过实验验证了方法的有效性。【结论】以某架空线路的巡检图像数据集为基础,对检测方法开展训练与测试,结果表明,巡检图像经所提技术压缩后,尺寸明显减小,恢复后的图像尺寸较原图约降低了3 MB且未出现失真;改进YOLOv5模型具有较高的检测精确度,其检测准确率和时间分别为0.91和0.87 s,算法在降低图像尺寸提升检测速度的同时保证了检测准确率。 展开更多
关键词 架空输电线路 缺陷检测 图像压缩 改进YOLOv5模型 非对称特征聚合编解码网络 通道空间注意力模块 逐通道稀疏残差卷积 检测准确率
在线阅读 下载PDF
融合渐进式去雨网络的军用车辆检测算法
11
作者 苏胜君 仝秋红 +3 位作者 柴国庆 苏海东 王凯 胡待方 《现代电子技术》 北大核心 2025年第5期127-134,共8页
针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹... 针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹信息的同时缓解卷积过程中的细节特征丢失问题;其次引入SPPFCSPC模块改进了单阶段检测器,保证检测器感受野的同时提高了效率,增强了检测模型的表达能力。自建数据集中的实验结果表明,雨天场景下,相较于经典检测算法YOLOv7,所提算法的mAP@0.5、mAP@0.5:0.95分别提升了4.4%、2.8%,算法检测速度达到21.05 f/s,基本满足检测实时性要求,证明了所提算法的有效性与实用性。 展开更多
关键词 图像去雨 编码器-解码器架构 轻量级高效雨纹特征提取模块 跨子网雨纹特征融合模块 SPPFCSPC模块 军用车辆检测
在线阅读 下载PDF
基于单目相机的复杂场景深度估计网络
12
作者 陈占国 陈振军 +4 位作者 薛晨霞 王国亮 李金峄 李玉廷 于保才 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第4期505-512,共8页
为提升复杂多变场景下深度估计的精度,提出一种基于U型编码器-解码器的单目深度估计网络。采用Swin Transformer架构作为编码器核心,实现对输入数据多层级、多尺度的精细化特征提取。采用逐层扩张卷积提取多尺度局部特征,通过特征交互... 为提升复杂多变场景下深度估计的精度,提出一种基于U型编码器-解码器的单目深度估计网络。采用Swin Transformer架构作为编码器核心,实现对输入数据多层级、多尺度的精细化特征提取。采用逐层扩张卷积提取多尺度局部特征,通过特征交互模块交互局部和全局特征,实现对复杂场景的更全面理解。采用对称式Transformer解码器并结合图像块扩展层将相邻维度的特征图重塑为更高分辨率的特征图,最终输出像素级深度预测结果。在NYU Depth v2数据集和KITTI数据集上进行定量实验。研究结果表明:该网络在复杂多变场景中具有高效性和实用性。研究方法突破了传统方法在复杂多变场景下的局限性,为深度估计的理论研究提供新的视角和方法。 展开更多
关键词 单目深度估计 U型编码器-解码器 逐层扩张卷积 特征交互模块 对称式Transformer解码器
在线阅读 下载PDF
新一代通用视频编码标准H.266/VVC:现状与发展 被引量:6
13
作者 万帅 霍俊彦 +1 位作者 马彦卓 杨付正 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第4期1-17,共17页
相比于上一代标准,新一代通用视频编码标准(H.266/VVC)在同等质量下能够节省大约50%的码率,且适用于多种多样的视频应用场景。论文从H.266/VVC的关键技术出发,对标准的现状、实现和应用发展进行深入探讨。H.266/VVC沿用既往标准中的双... 相比于上一代标准,新一代通用视频编码标准(H.266/VVC)在同等质量下能够节省大约50%的码率,且适用于多种多样的视频应用场景。论文从H.266/VVC的关键技术出发,对标准的现状、实现和应用发展进行深入探讨。H.266/VVC沿用既往标准中的双层码流体系和混合编码框架,针对帧内预测、帧间预测、变换、量化、环路滤波等所有主要编码模块进行了技术革新,并为屏幕内容视频等应用提供了高效的专用编码工具。H.266/VVC标准目前已处于实用化阶段,官方参考软件VTM和开源编解码器VVenC/VVdeC是目前最具代表性的软件编解码实现。对H.266/VVC的性能分析可以看出:H.266/VVC针对高分辨率视频取得的编码增益更为突出;主要编码工具对性能的贡献通常以复杂度为代价,但也有部分编码工具在提升编码性能的同时可降低整体编码复杂度。H.266/VVC的硬件实现面临诸多挑战,发展明显滞后于软件实现,现有研究主要集中在对具体编码模块的硬件加速方面。H.266/VVC标准发布之后,下一代视频编码标准的发展目前仍围绕混合编码框架进行探索,聚焦在两大方向:超越VVC的增强压缩关注更为先进的、非神经网络的编码工具,基于神经网络的视频编码则探索采用神经网络的编码工具。除此之外,部分或完全跳出现有混合编码框架的端到端视频编码也在飞速发展,未来视频编码标准与神经网络结合成为趋势,但面临着计算资源依赖和稳定结构两方面的考验。 展开更多
关键词 H.266/VVC标准 视频编码标准 编码模块 编解码器 神经网络
在线阅读 下载PDF
基于卷积调制与空间协作的水下图像增强 被引量:2
14
作者 郭伟 王欣哲 +1 位作者 王江达 王春艳 《计算机工程》 CAS CSCD 北大核心 2024年第8期310-318,共9页
针对光线在水中的散射和吸收效应造成水下图像纹理和结构不清晰的问题,提出一种基于卷积调制(CM)与空间协作(SC)的水下图像增强算法。以编码器-解码器作为基础网络,使用RepVGG的浅层和深层网络分别提取水下图像的纹理和结构特征。首先,... 针对光线在水中的散射和吸收效应造成水下图像纹理和结构不清晰的问题,提出一种基于卷积调制(CM)与空间协作(SC)的水下图像增强算法。以编码器-解码器作为基础网络,使用RepVGG的浅层和深层网络分别提取水下图像的纹理和结构特征。首先,特征主导网络将RepVGG中提取到的水下图像特征转化成具有不同尺度的纹理和结构特征,使其与解码器中的特征图进行拼接融合。其次,在编码器中使用卷积调制模块,采用深度可分离卷积(DSConv)模拟自注意力机制的方式减少图像细节信息的丢失,提高编码器特征提取的能力。最后,在解码器中使用空间协作卷积(SCConv),在空间维度上处理水下特征保留更多的位置信息,以提高解码器对融合后特征的增强能力。实验结果表明,该算法在视觉感知与性能指标上优于对比算法,峰值信噪比(PSNR)和结构相似性(SSIM)指标最高达到23.4465 dB和0.8946,水下彩色图像质量评价(UCIQE)和水下图像质量测量(UIQM)指标最高达到0.5826和3.0689,进一步证明了该算法能够有效增强水下图像的纹理和结构特征,具有较好的视觉感知效果。 展开更多
关键词 图像处理 水下图像增强 卷积调制 空间协作 编解码结构
在线阅读 下载PDF
一种基于Transformer编码器与LSTM的飞机轨迹预测方法 被引量:1
15
作者 李明阳 鲁之君 +1 位作者 曹东晶 曹世翔 《航天返回与遥感》 CSCD 北大核心 2024年第2期163-176,共14页
为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和... 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。 展开更多
关键词 轨迹预测 Transformer编码器 神经网络 飞机目标 Transformer-encoder-LSTM模型
在线阅读 下载PDF
基于跨层次聚合网络的实时城市街景语义分割 被引量:1
16
作者 侯志强 程敏婕 +2 位作者 马素刚 屈敏杰 杨小宝 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1212-1226,共15页
随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战... 随着自动驾驶技术的迅速发展,精确高效的场景理解显得尤为重要。城市街景语义分割旨在准确识别并分割出行人、障碍物、道路和标志物等要素,为自动驾驶技术提供必要的道路信息。然而,当前的语义分割算法在城市街景分割中仍然面临一些挑战,主要表现为不同类别的像素区分不够清晰、对于复杂场景结构的理解不够精准以及对小尺度对象或大尺度结构的分割不准确等问题。为此,本文提出一种基于跨层次聚合网络的实时城市街景语义分割算法。首先,在编码器末端设计了结合跨层次聚合的金字塔池化模块,用于高效提取多尺度上下文信息;其次,在编码器和解码器之间设计了跨层次聚合模块,通过引入通道注意力机制增强信息的表征能力,逐级聚合编码器阶段的特征以充分实现特征复用;最后,在解码器阶段设计了多尺度融合模块,在通道维度聚合全局信息与局部信息,促进深层特征与浅层特征的融合。将所提算法在两个通用的城市街景数据集上进行了验证。在一张RTX3090显卡上(TensorRT测速环境),本文算法在Cityscapes测试集以294 FPS的实时性达到73.0%mIoU的准确性,在更高分辨率的图像上以164 FPS的实时性达到75.8%mIoU的准确性;在CamVid数据集以239 FPS的实时性达到74.8%mIoU的准确性。实验结果表明,本文算法在准确性与实时性之间取得了有效平衡,对比其他算法的语义分割性能具有显著提升,为实时城市街景语义分割领域带来了新的突破。 展开更多
关键词 语义分割 卷积神经网络 城市街景 编码器-解码器结构 金字塔池化模块
在线阅读 下载PDF
多尺度融合的双分支特征提取人群计数算法 被引量:1
17
作者 曾芸芸 张红英 袁明东 《计算机工程与应用》 CSCD 北大核心 2024年第20期224-232,共9页
人群计数在公共安全管理、公共空间设计以及其他视觉任务如行为分析、拥塞分析等方面具有重要的应用。然而复杂的背景和人头尺度大小不一导致人群计数的效果并不理想。针对静态图像中尺度变化和背景干扰问题,提出了一种基于双分支中间... 人群计数在公共安全管理、公共空间设计以及其他视觉任务如行为分析、拥塞分析等方面具有重要的应用。然而复杂的背景和人头尺度大小不一导致人群计数的效果并不理想。针对静态图像中尺度变化和背景干扰问题,提出了一种基于双分支中间特征提取的人群计数网络——DBFE_MFNet。该网络沿用编码-解码器结构,在编码阶段使用VGG19卷积神经网络的前16层,为了更好融合多尺度信息,将VGG19卷积神经网络的前16层的后4层卷积替换成空洞率为2的膨胀卷积,解码部分采用抑制背景干扰的残差卷积注意力模块(residual convolutional attention module,RCAM),在编码-解码器结构中间插入双分支中间特征提取模块(dual branch intermediate feature extraction module,DBFE),分支1采用金字塔结构并融合位置注意力模块提取多尺度上下文信息,分支2沿用金字塔结构融合双通道注意力机制使模型关注不同大小人头信息,最后使用1×1卷积生成密度图。实验方面,在ShanghaiTech PartA、ShanghaiTech PartB、Mall数据集上进行了算法对比实验,DBFE_MFNet模型在上述数据集的平均绝对误差和均方根误差分别为63.2、7.1、1.80和99.2、11.8、2.28,经对比实验分析,DBFE_MFNet模型具有不错的计数性能和稳定性能;在ShanghaiTech PartB进行了消融实验,实验验证了模型各模块的有效性。 展开更多
关键词 人群计数 VGG19 编码-解码器 残差卷积注意力模块 双分支中间特征提取模块
在线阅读 下载PDF
改进单点定位模型的轻量级端到端文本识别方法
18
作者 曹锦纲 张泽恩 张铭泉 《智能系统学报》 CSCD 北大核心 2024年第6期1503-1517,共15页
针对现有文本识别方法推理速度慢、模型参数量大的问题,提出一种改进单点定位模型(single-point scene text spotting,SPTS)的轻量级端到端文本识别方法。首先,引入PP-LCNet作为骨干网络进行特征提取;接着,在解码器之前设计三局部通道... 针对现有文本识别方法推理速度慢、模型参数量大的问题,提出一种改进单点定位模型(single-point scene text spotting,SPTS)的轻量级端到端文本识别方法。首先,引入PP-LCNet作为骨干网络进行特征提取;接着,在解码器之前设计三局部通道注意力模块,通过3种不同尺度的一维卷积增强通道间的信息交互;然后,提出用局部增强注意力模块替换原解码器中的前馈网络部分,通过深度可分离卷积增强文本特征空间关联性;再后,在各层解码器之后设计标记选择模块,通过显著性标记突出文本特征,减少无关像素的累积;最后,通过自回归解码方式预测出相应识别结果。将所提方法在Total-Text、CTW1500和ICDAR2015数据集上进行实验,并与6种先进方法(ABCNet、MANGO、ABCNet v2、SPTS、SwinTextSpotter和TESTR)对比。相比于SPTS方法,所提方法的推理速度分别提高了19.6、35.7、21.1 f/s,参数量减少了70.7%,证明了所提方法的有效性。 展开更多
关键词 注意力模块 自回归解码 轻量级网络 单点定位 文本识别 端到端 编码器 解码器
在线阅读 下载PDF
基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型
19
作者 林顺富 李毅 +2 位作者 沈运帷 林屹峰 李东东 《电力自动化设备》 EI CSCD 北大核心 2024年第3期127-133,共7页
为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和... 为了进一步提高低频居民负荷分解模型的分解精度与泛化能力,提出一种基于全卷积去噪自编码器与卷积块注意力模块的非侵入式居民负荷分解模型,该模型能够深度解析单一电器的功率曲线。基于全卷积去噪自编码器分别构建主回归子任务网络和辅助分类子任务网络;在子任务网络中,通过引入卷积块注意力模块自适应分配特征注意力权重,以减小不重要因素在模型训练过程中的影响;将辅助分类子任务网络的输出作为主回归子任务网络输出的门控单元,实现最终的负荷分解。基于公开数据集的算例结果表明,所提负荷分解模型比现有负荷分解模型具有更优的分解精度和泛化能力。 展开更多
关键词 负荷分解 全卷积去噪自编码器 注意力模块 子任务网络 门控单元
在线阅读 下载PDF
基于双流增强编码和注意优化解码的图像篡改定位算法
20
作者 朱叶 赵晓祥 于洋 《液晶与显示》 CAS CSCD 北大核心 2024年第8期1103-1115,共13页
主流图像篡改定位方法通常通过简单操作融合不同流的不一致特征,导致特征冗余且篡改区域的像素误检。基于此,本文提出基于双流增强编码和注意优化解码的图像篡改定位框架。首先,提出双流增强编码分别对图像和频域特征进行基于噪声和通... 主流图像篡改定位方法通常通过简单操作融合不同流的不一致特征,导致特征冗余且篡改区域的像素误检。基于此,本文提出基于双流增强编码和注意优化解码的图像篡改定位框架。首先,提出双流增强编码分别对图像和频域特征进行基于噪声和通道注意力的自增强和基于特征映射的交叉注意权重的交互增强。随后,引入多级感受野策略探索多尺度上下文信息,设计邻阶特征聚合模块融合多尺度相邻特征。最后,利用篡改区域和非篡改区域协同增强模型的篡改定位能力,提出注意优化解码模块,消除初始篡改区域预测中边缘像素的错误预测,逐步精确细化篡改定位。在4个主流公共基准数据集NIST16、Coverage、Columbia、CASIA和两个现实挑战数据集IMD20、Wild上与主流篡改定位方法进行对比,本文算法在无微调模型和微调模型两个设置下,在6个数据集上的性能最优,证明本文提出的篡改定位网络能够充分利用多种篡改线索,在不同的篡改数据集上实现篡改区域的有效定位,具有更高的定位精度和更强的鲁棒性。 展开更多
关键词 图像篡改定位 双流增强编码 注意优化解码 邻阶特征聚合
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部