期刊文献+
共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description 被引量:9
1
作者 赵付洲 宋冰 侍洪波 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2896-2905,共10页
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring. 展开更多
关键词 multiple operating modes weighted local standardization support vector data description multi-mode monitoring
在线阅读 下载PDF
基于LSTM-GBSVDD模型的飞行轨迹异常检测方法
2
作者 李琳 曾雅琴 +2 位作者 朱惠民 孙世岩 梁伟阁 《兵工学报》 北大核心 2025年第5期83-93,共11页
为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD... 为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory, LSTM)网络和支持向量数据描述(Support Vector Data Description, SVDD)的无监督异常检测方法。利用LSTM网络提取可变长度飞行轨迹的关键特征,并将其转化为固定长度的序列表示;通过SVDD算法构建多维超球分类器,对正常飞行轨迹进行建模,从而识别潜在异常轨迹。为进一步提升模型性能,引入基于梯度的优化算法(Gradient-Based training algorithm, GB),实现LSTM与SVDD参数的联合训练,大幅度提高检测精度和计算效率。仿真实验结果表明,新提出的基于梯度优化的长短时记忆网络和支持向量数据描述模型(Long Short-Term Memory network and Support Vector Data Description model based on Gradient-Based training algorithm optimization, LSTM-GBSVDD)的飞行轨迹异常检测方法在处理复杂、多变的飞行轨迹异常检测任务中表现出较好的有效性和优越性,有较强的应用前景。 展开更多
关键词 飞行轨迹 长短时记忆 支持向量数据描述 异常检测
在线阅读 下载PDF
基于CE-Louvain分解和动态递归SVDD的分布式过程监测
3
作者 王晶 刘鹏阳 +2 位作者 卢山 周萌 陈晓露 《控制理论与应用》 北大核心 2025年第8期1650-1658,共9页
针对全厂过程的复杂非线性动态特征,本文提出了一种分布式的过程监测方法.它包括两个主要内容:基于copula entropy Louvain(CE-Louvain)的过程分解和基于动态递归支持向量数据描述(DR-SVDD)的故障检测.首先,根据机理知识将全厂过程中的... 针对全厂过程的复杂非线性动态特征,本文提出了一种分布式的过程监测方法.它包括两个主要内容:基于copula entropy Louvain(CE-Louvain)的过程分解和基于动态递归支持向量数据描述(DR-SVDD)的故障检测.首先,根据机理知识将全厂过程中的变量初步映射为和过程结构相对应的无向图模型,引入CE来描述无向图中不同节点(即过程变量)之间的权重,并基于将CE-Louvain算法精细分解为合理的子块.然后,针对每个子块提出了基于DR-SVDD的分布式故障检测方法以提高故障检测率.最后,利用贝叶斯融合推理方法得到全局过程监测结果.提出的方法在Tennesse-Eastman(TE)过程中得到了验证. 展开更多
关键词 非线性动态过程 过程监测 CE-Louvain分解 支持向量数据描述
在线阅读 下载PDF
改进ResNet结合MKSVDD的谐波减速器多状态同尺度定量评估方法
4
作者 孙宇林 罗双 +2 位作者 康守强 王玉静 刘连胜 《仪器仪表学报》 北大核心 2025年第6期304-316,共13页
针对谐波减速器故障程度难以精确量化以及不同故障位置无法在同一尺度下定量分析的问题,提出一种改进深度残差网络(ResNet)结合多核支持向量数据描述(MKSVDD)的谐波减速器多状态同尺度下的定量评估方法。该方法首先提出一种新的谐波减... 针对谐波减速器故障程度难以精确量化以及不同故障位置无法在同一尺度下定量分析的问题,提出一种改进深度残差网络(ResNet)结合多核支持向量数据描述(MKSVDD)的谐波减速器多状态同尺度下的定量评估方法。该方法首先提出一种新的谐波减速器多状态同尺度定量评估框架,并对微弱故障敏感的声发射信号进行连续小波变换构建二维时频图数据集;其次提出卷积注意力模块改进ResNet以充分挖掘二维时频图的深层特征;再引入多核核函数改进支持向量数据描述,基于谐波减速器正常状态的深层特征构建MKSVDD健康状态评估模型;然后,计算不同故障程度的特征相对于正常状态球心的距离,构建评估指标,通过拟合得到定量评估曲线;此外,根据谐波减速器的结构和声发射信号传播机理,提出相对距离补偿方案以构建多状态评估指标,实现谐波减速器不同健康状态在同一尺度下的定量评估。通过搭建谐波减速器实验台,对未知故障程度的数据进行多组对比实验的结果表明,改进后的深度残差网络提取到的特征更聚集,所提方法能实现谐波减速器不同故障位置在同一尺度下的定量分析,且评估误差不超过3.2%,有效完成谐波减速器多状态同尺度的定量评估。 展开更多
关键词 谐波减速器 卷积注意力机制 多核支持向量数据描述 多故障状态 定量评估
在线阅读 下载PDF
面向城市排水管网缺陷诊断的鲁棒无监督多任务异常检测方法
5
作者 闫龙博 毛文涛 +1 位作者 仲志鸿 范黎林 《计算机应用》 北大核心 2025年第6期1833-1840,共8页
目前利用机器学习技术对城市排水管网渗漏等典型缺陷状态检测异常已成为城市智能管理的焦点;但实际场景下采集的管网监测数据包含了大量噪声,尤其是降雨造成的液位数据突变,会严重影响管网渗漏检测结果的准确性和可靠性。为解决上述问题... 目前利用机器学习技术对城市排水管网渗漏等典型缺陷状态检测异常已成为城市智能管理的焦点;但实际场景下采集的管网监测数据包含了大量噪声,尤其是降雨造成的液位数据突变,会严重影响管网渗漏检测结果的准确性和可靠性。为解决上述问题,提出一种面向排水管网缺陷诊断的鲁棒无监督多任务异常检测方法。首先,构建融合多个物理监测站点时空信息的深度多任务支持向量数据描述(SVDD)模型,针对各站点分别建立基于超球的单分类判别器,以提取各站点异常检测规则,并建立规则适配机制,获得多个站点的公共特征表示;其次,基于所获得的特征表示,对各站点的SVDD模型进一步引入滑动窗口,连续识别管网监测数据中的异常波动,进而确定管网监测数据序列中公共干扰因素造成的噪声点,并对噪声点进行多项式插值修正,由此排除降雨等产生的不规则噪声干扰;最后,使用修正后的监测序列进行基于自编码器(AE)重构误差的管网渗漏检测。利用常州市清潭水务管理系统采集的2017—2018年城区排水管网监测数据进行验证,结果显示,所提方法和人工检修结果相符合,同时相较于基于统计方法和传统机器学习方法,检测结果更准确,误检率更低。以清潭东区域为例,该方法在应对降雨干扰时的误检率较次优方法USAD(Unsupervised Anomaly Detection)降低了5.47个百分点,显著提升了模型在强噪声场景下的鲁棒性,进一步验证了所提方法的准确性与实用性。 展开更多
关键词 排水管网 异常检测 时间序列 多任务学习 支持向量数据描述模型
在线阅读 下载PDF
基于SVDD和SVM的高压调门油动机状态监测系统研究
6
作者 马立强 姜安琦 +2 位作者 姜万录 郑云飞 吴凤和 《振动与冲击》 北大核心 2025年第12期238-248,共11页
在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SV... 在高压调门油动机的运行监控中,由于正常状态的样本远多于故障样本,故障数据稀缺且采集相对困难,此外还存在故障发生的不确定性,传统的监测方法难以有效应用。对此,提出了一种基于支持向量数据描述(support vector data description,SVDD)异常检测和支持向量机(support vector machine,SVM)故障诊断的高压调门油动机状态监测系统。首先,从原始数据中提取时域(time domain,T)、频域(frequency domain,F)和时频域小波包子带能量(wavelet packet subband energy,W)特征,并通过特征融合及归一化的方式形成新的多维融合特征向量TFW。随后,采用卷积神经网络(convolutional neural network,CNN)对TFW进行深层次挖掘,生成更具表现力的特征TFWCNN,以此作为SVDD和SVM模型的输入。搭建了高压调门油动机故障模拟试验台,用以采集数据并验证该方法的有效性。研究结果表明:在三个具有不同阀位开度的高压调门油动机动态数据集上,SVDD异常检测的F1分数分别达到0.9991、0.9978和0.9760;SVM故障诊断的F1分数分别为0.9988、0.9950和0.9867;不仅说明该方法在高压调门油动机的状态监测中表现出的优异性能,同时也说明深度TFWCNN特征在高压调门油动机状态监测中的有效性和准确性;还为类似的汽轮机状态监测诊断系统提供了一种有效的技术方案。 展开更多
关键词 高压调门油动机 支持向量数据描述(SVDD)异常检测 支持向量机(SVM)故障诊断 状态监测系统
在线阅读 下载PDF
基于Weibull核函数与MCSVDD的轮毂电机故障诊断
7
作者 刘炳晨 薛红涛 丁殿勇 《振动.测试与诊断》 北大核心 2025年第5期922-928,1061,共8页
为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(... 为监测分布式驱动电动汽车中轮毂电机运行状态,确保整车运行安全,提出一种基于改进的多类支持向量数据描述(multi-class support vector data description,简称MCSVDD)的轮毂电机故障诊断方法。首先,针对MCSVDD算法的改进,基于近邻传播(affinity propagation,简称AP)聚类算法提出了MCSVDD以“距离类内簇中心最小”的类别判断法则,并基于Weibull函数构造了Weibull核函数,用于优化数据描述模型;其次,针对轮毂电机运行状态的多维特征参数组,提出一种基于最小距离传播鉴别投影(minimum-distance propagation discriminant projection,简称MPDP)的降维法,提高了不同工况下轮毂电机故障状态的可分性;最后,定制带有典型轴承故障的轮毂电机,采集7种工况下的振动信号,验证所提出方法的有效性。结果表明:基于MPDP降维后的轮毂电机运行状态观测样本的可分性优于线性判别分析(linear discriminant analysis,简称LDA)、局部保持投影(locality preserving projection,简称LPP)及最小距离鉴别投影(minimum-distance discriminant projection,简称MDP)方法,基于Weibull核函数的MCSVDD状态识别系统的识别精度整体高于基于多项式和高斯核函数的MCSVDD系统。 展开更多
关键词 轮毂电机 振动信号 故障诊断 最小距离传播鉴别投影 多类支持向量数据描述 Weibull核函数
在线阅读 下载PDF
基于直达路径信号残差和支持向量数据描述的非视距信号识别方法
8
作者 倪雪 曾海彧 杨文东 《电子与信息学报》 北大核心 2025年第6期1873-1884,共12页
非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特... 非视距(NLOS)误差是限制超宽带定位准度的一个重要因素,快速准确识别出NLOS信号成为提高超宽带定位准度的前提。该文基于信道冲激响应提出了一种新型信号特征参数:直达路径(DP)信号残差,与文献提出的9个典型波形特征参数组合成不同的特征组合用于表征信号,基于此,为了使识别方法兼具样本获取成本低、环境适应能力好的特点,该文以构建在单个环境下采集单类信号数据作为分类模型的训练样本,在识别其它场景NLOS信号中有更好性能的方法为目的,设计了一种带DP信号残差训练的支持向量数据描述(SVDD)的识别方法。为了进一步提高识别准确率,将基于多层神经网络的深度特征提取技术引入SVDD中,设计了一种基于反向扩维的深度支持向量数据描述(DSVDD)的NLOS信号识别方法。实验结果表明:带DP信号残差训练的DSVDD方法只需在单个场景采集单类信号样本,且在训练集和测试集采集自不同场景时实现了85%以上的准确率,较只使用典型波形特征训练的SVDD提升了10%以上。 展开更多
关键词 超宽带定位 非视距信号识别 直达路径信号残差 支持向量数据描述 深度支持向量数据描述
在线阅读 下载PDF
基于支持向量数据描述的局部放电类型识别 被引量:46
9
作者 唐炬 林俊亦 +1 位作者 卓然 陶加贵 《高电压技术》 EI CAS CSCD 北大核心 2013年第5期1046-1053,共8页
电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法... 电力设备内部绝缘缺陷发展往往会因环境条件的改变而变化,加之采集到的局部放电(PD)数据具有分散性和复杂性,导致传统绝缘故障识别方法效果不佳。为此,提出了一种用于气体绝缘组合电器(GIS)设备PD类型识别的支持向量数据描述(SVDD)算法。借鉴支持向量机(SVM)算法中最大化"间隔"的思想,建立了这种优化的支持向量数据描述(OR-SVDD)算法。该算法采用多分类方法中的"一对多"原理,用以解决对传统绝缘故障出现的识别率低、误识别、漏识别以及识别时间长等问题。通过仿真与实验结果表明,OR-SVDD算法能够对所有的数据进行正确描述,自动辨识拒识对象,训练时间低于传统的SVM算法,并具有较高的识别率,在电力设备在线监测与局部放电模式识别领域有良好的应用前景。 展开更多
关键词 局部放电 支持向量机 SVM 支持向量数据描述 SVDD 拒识 模式识别
在线阅读 下载PDF
基于支持向量数据描述的异常检测方法 被引量:17
10
作者 杨敏 张焕国 +1 位作者 傅建明 罗敏 《计算机工程》 EI CAS CSCD 北大核心 2005年第3期39-42,共4页
提出了一种基于支持向量数据描述算法的异常检测方法。该方法将入侵检测看作是一种单值分类问题,建立正常行为的支持向量描述模型,通过该模型可以检测各种已知和未知的攻击行为。该方法是一种无监督的异常检测方法,能够在包含噪声的数... 提出了一种基于支持向量数据描述算法的异常检测方法。该方法将入侵检测看作是一种单值分类问题,建立正常行为的支持向量描述模型,通过该模型可以检测各种已知和未知的攻击行为。该方法是一种无监督的异常检测方法,能够在包含噪声的数据集进行模型训练,降低了训练集的要求。在KDD CUP'99 标准入侵检测数据集上进行实验,并与无监督聚类异常检测实验结果相比较,证实该方法能够获得较高检测率和较低误警率。 展开更多
关键词 异常检测方法 支持向量 入侵检测 数据集 描述模型 无监督聚类 数据描述 法能 正常 行为
在线阅读 下载PDF
基于SVDD的冷水机组传感器故障检测及效率分析 被引量:26
11
作者 李冠男 胡云鹏 +3 位作者 陈焕新 黎浩荣 李炅 胡文举 《化工学报》 EI CAS CSCD 北大核心 2015年第5期1815-1820,共6页
传感器是制冷空调系统的重要组成部分,起着测量数据和监控状态的作用。传感器故障,尤其是输出偏差会引起测量值不准,影响控制策略,导致系统能耗增加。依据模式识别理论,故障检测可处理为一种单分类问题。据此采用一种单分类模式识别工... 传感器是制冷空调系统的重要组成部分,起着测量数据和监控状态的作用。传感器故障,尤其是输出偏差会引起测量值不准,影响控制策略,导致系统能耗增加。依据模式识别理论,故障检测可处理为一种单分类问题。据此采用一种单分类模式识别工具——支持向量数据描述(SVDD),针对冷水机组进行了偏差故障条件下的传感器故障检测工作。收集冷水机组实测正常运行数据,基于训练集建立SVDD模型,进行冷水机组传感器故障检测;在测试集中引入不同幅值水平的偏差故障,分析检测效率。结果表明:基于SVDD的冷水机组传感器故障检测效果明显,但对于不同传感器的不同幅值偏差故障,故障识别程度并不一致。 展开更多
关键词 冷水机组 过程控制 故障检测 支持向量数据描述 算法 模型简化
在线阅读 下载PDF
基于改进SVDD的飞参数据新异检测方法 被引量:22
12
作者 孙文柱 曲建岭 +2 位作者 袁涛 高峰 付战平 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第4期932-939,共8页
为实现飞参数据自动判读,提出一种基于改进支持向量数据描述(SVDD)的飞参数据新异检测方法。首先通过启发式的约减SVDD核矩阵尺寸,加快了SVDD的运算速度,并使之更适合于大样本的飞参数据新异检测;而后研究了飞参数据中参数采样率不统一... 为实现飞参数据自动判读,提出一种基于改进支持向量数据描述(SVDD)的飞参数据新异检测方法。首先通过启发式的约减SVDD核矩阵尺寸,加快了SVDD的运算速度,并使之更适合于大样本的飞参数据新异检测;而后研究了飞参数据中参数采样率不统一条件下样本生成的问题;最后以发动机气路参数、舵面偏转参数和发动机振动值参数3组异常状态飞参数据为例,应用改进的SVDD方法进行了飞参数据新异检测。结果表明,该方法能准确检测出飞参数据中的异常,可用于飞参数据自动判读。 展开更多
关键词 模式识别 支持向量数据描述 新异检测 单类分类 飞参数据
在线阅读 下载PDF
支持向量数据描述在西北暴雨预报中的应用试验 被引量:18
13
作者 燕东渭 孙田文 +2 位作者 杨艳 方建刚 刘志镜 《应用气象学报》 CSCD 北大核心 2007年第5期676-681,共6页
传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类... 传统机器学习中通常隐含假设所研究问题是类别平衡的,气象预报中预测灾害天气时就不满足这个假设,这时往往需要预测重要而稀少的正类(少数类)。传统机器学习以精度最大化为目标,在遇到不平衡类别问题时,容易训练出把所有实例都分为反类(多数类)的平庸的分类器。支持向量数据描述是从支持向量机(SVM)发展而来的基于核的机器学习方法,只使用一类样本就可以工作,适合于不平衡类别。以铜川暴雨预测作为试验对象,对SVM和支持向量数据描述(SVDD)进行了对比试验。试验结果表明对于这个不平衡类别问题SVDD具有优势。 展开更多
关键词 机器学习 支持向量数据描述(SVDD) 支持向量机(SVM) 暴雨预测
在线阅读 下载PDF
网络流量异常检测中分类器的提取与训练方法研究 被引量:23
14
作者 郑黎明 邹鹏 +1 位作者 贾焰 韩伟红 《计算机学报》 EI CSCD 北大核心 2012年第4期719-729,F0003,共12页
随着网络安全领域研究的不断深入,研究者提出了各种类型的流量异常检测方法,基于分类的方法是其中很重要的一类.但是因为网络环境的多样性和动态变化性,在训练数据集上具有很高精度的检测系统实际部署时可能出现大量的误报.文中针对训... 随着网络安全领域研究的不断深入,研究者提出了各种类型的流量异常检测方法,基于分类的方法是其中很重要的一类.但是因为网络环境的多样性和动态变化性,在训练数据集上具有很高精度的检测系统实际部署时可能出现大量的误报.文中针对训练模型难于获取以及部署环境的动态变化性问题,对分类器的选择、使用和训练方法进行了研究.首先把网络流量数据投影到不同维度的Hash直方图上构建检测向量,在检测向量的基础上对比了各类分类器,选用能够处理高维数据、泛化能力强的SVDD进行异常检测;采用增减式在线训练算法对分类器进行不断训练,提高异常检测系统的精度并减少训练成本;最后采用多步关联检测算法优化检测精度,并在新增样本中剔除明显的异常样本,减少训练成本提高分类精度.通过大量的真实网络流量数据验证了上述方法具有较高的检准率和较低的误报率,并能够有效减少训练成本. 展开更多
关键词 流量异常检测 直方图 支持向量数据描述 在线学习 关联
在线阅读 下载PDF
基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究 被引量:25
15
作者 付文龙 周建中 +3 位作者 李超顺 肖汉 肖剑 朱文龙 《中国电机工程学报》 EI CSCD 北大核心 2014年第32期5788-5795,共8页
水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用... 水电机组振动故障诊断中常面临样本稀缺及分布不均匀、不平衡等问题,严重影响诊断结果。针对此类问题提出一种基于模糊K近邻(K nearest neighbor,KNN)支持向量数据描述(support vector data description,SVDD)的故障诊断模型。首先利用核变换将故障样本映射到高维特征空间,并采用SVDD提取不平衡故障样本域的边界支持向量样本,构建基于相对距离模糊阈值和KNN的决策规则,最终在此基础上建立机组故障诊断模型。用该模型对经过不平衡处理的国际标准测试数据样本进行测试实验,并与支持向量机(support vector machine,SVM)及目前应用较多的SVDD模型的分类结果进行对比,结果表明该模型可有效解决不平衡样本分类倾斜性问题。最后,将模型用于某水电厂机组振动故障诊断,取得了较高的诊断精度,证明了该方法的有效性。 展开更多
关键词 支持向量数据描述(SVDD) K近邻(KNN) 模糊阈值 不平衡 故障诊断
在线阅读 下载PDF
支持向量数据描述用于机械设备状态评估研究 被引量:22
16
作者 李凌均 韩捷 +2 位作者 郝伟 董辛 何正嘉 《机械科学与技术》 CSCD 北大核心 2005年第12期1426-1429,共4页
本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从... 本文提出了对机械设备运行状态进行评估的新方法———支持向量数据描述方法。该方法应用在机械故障诊断和状态监测中,仅仅依靠正常运行时的数据信号,而不需要故障数据,就可以监测机器的运行状态。给出了机组运行状态优劣的定量指标,从而为设备管理和预知维修提供科学的决策依据。将该方法应用于某炼油厂关键设备的运行状态评估中,及时、正确地评价出设备状态异常,为成功诊断出螺栓裂纹的早期故障提供帮助。 展开更多
关键词 支持向量数据描述 单值分类 状态监测 故障诊断
在线阅读 下载PDF
基于支持向量的单类分类方法综述 被引量:27
17
作者 吴定海 张培林 +1 位作者 任国全 陈非 《计算机工程》 CAS CSCD 北大核心 2011年第5期187-189,共3页
研究基于支持向量机理论和单类分类思想的2种支持向量域数据描述模型,即单分类支持向量机和支持向量描述模型,分析2类模型之间的区别和联系以及参数的优化设置,总结支持向量域单分类方法存在的缺点以及目前对这2类支持向量描述模型研究... 研究基于支持向量机理论和单类分类思想的2种支持向量域数据描述模型,即单分类支持向量机和支持向量描述模型,分析2类模型之间的区别和联系以及参数的优化设置,总结支持向量域单分类方法存在的缺点以及目前对这2类支持向量描述模型研究的改进方向。 展开更多
关键词 单类分类 支持向量 数据描述 模式识别
在线阅读 下载PDF
基于加权模糊支持向量描述的旋转机械故障分类 被引量:8
18
作者 张永 张凤梅 +1 位作者 谢福鼎 迟忠先 《计算机科学》 CSCD 北大核心 2009年第7期182-184,229,共4页
基于支持向量数据描述良好的分类性能,针对旋转机械故障诊断中故障样本获取的特点,提出了基于正负类样本的加权模糊支持向量数据描述多类分类器,不仅考虑了正类样本,而且也充分考虑了负类样本对分类结果的影响。利用模拟故障样本对系统... 基于支持向量数据描述良好的分类性能,针对旋转机械故障诊断中故障样本获取的特点,提出了基于正负类样本的加权模糊支持向量数据描述多类分类器,不仅考虑了正类样本,而且也充分考虑了负类样本对分类结果的影响。利用模拟故障样本对系统进行了实验,结果表明提出的方法在系统中具有良好的分类能力。 展开更多
关键词 支持向量数据描述 加权 分类器 支持向量机
在线阅读 下载PDF
基于大数据的电力信息网络流量异常检测机制 被引量:39
19
作者 姜红红 张涛 +3 位作者 赵新建 钱欣 赵天成 高莉莎 《电信科学》 北大核心 2017年第3期134-141,共8页
随着智能电网建设的加强,电力信息网络及其承载的业务系统得到迅猛发展,网络业务流量的检测和预警具有重要的安全意义。针对目前电力信息网络缺乏处理流量异常问题的有效技术手段,提出了一种基于大数据的电力信息网络流量异常检测机制,... 随着智能电网建设的加强,电力信息网络及其承载的业务系统得到迅猛发展,网络业务流量的检测和预警具有重要的安全意义。针对目前电力信息网络缺乏处理流量异常问题的有效技术手段,提出了一种基于大数据的电力信息网络流量异常检测机制,并通过对改进的局部异常因子(M-LOF)和支持向量域数据描述(SVDD)两种常用异常检测算法的对比分析,总结出适合电力信息网络的流量异常检测方法 。 展开更多
关键词 电力信息网络 流量异常检测 局部异常因子 支持向量域数据描述
在线阅读 下载PDF
基于主元分析的支持向量数据描述机械故障诊断 被引量:18
20
作者 潘明清 周晓军 +1 位作者 吴瑞明 雷良育 《传感技术学报》 EI CAS CSCD 北大核心 2006年第1期128-131,共4页
针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据... 针对机械故障诊断缺乏故障样本的问题,提出了故障诊断单值分类法——支持向量数据描述法(SVDD)。这种方法只需要正常运行状态的数据样本,就可以建立单值分类器,区分出正常和异常状态。试验以轴承为研究对象,采用主元分析法(PCA)作数据前处理,提取振动信号的统计特征值,得到的主元特征指标输入到SVDD分类器进行训练和测试。试验结果表明,PCA对正常和故障样本有较大的区分度,SVDD分类器能很好的分辨出轴承正常和故障状态,并且对未知故障有良好的识别能力。 展开更多
关键词 故障诊断 特征提取 主元分析 支持向量数据描述 轴承
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部